scholarly journals High strength/high young's modulus polymeric materials.

Kobunshi ◽  
1985 ◽  
Vol 34 (11) ◽  
pp. 922-925
Author(s):  
Masatoshi Iguchi
2021 ◽  
pp. 130308
Author(s):  
E.S.N. Lopes ◽  
L.U. dos Santos ◽  
R. Caram ◽  
K.N. Campo

2016 ◽  
Vol 22 (4) ◽  
pp. 841-844 ◽  
Author(s):  
Tye Langston

AbstractCarbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber’s diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young’s modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young’s modulus) matched very well with the manufacturers’ reported values at 20 mm gage lengths, but deviated significantly at other lengths.


Author(s):  
Tapabrata Maity ◽  
Konda Gokuldoss Prashanth ◽  
Özge Balcı ◽  
Grzegorz Cieślak ◽  
Maciej Spychalski ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 693 ◽  
Author(s):  
Myoungjae Lee ◽  
In-Su Kim ◽  
Young Hoon Moon ◽  
Hyun Sik Yoon ◽  
Chan Hee Park ◽  
...  

Metals for biomedical implant applications require a simultaneous achievement of high strength and low Young’s modulus from the viewpoints of mechanical properties. The American Society for Testing and Materials (ASTM) standards suggest two types of processing methods to confer such a mechanical performance to Ti-13Nb-13Zr alloy: solution treatment (ST) and capability aging (CA). This study elucidated the kinetics of CA process in Ti-13Nb-13Zr alloy. Microstructural evolution and mechanical change were investigated depending on the CA duration from 10 min to 6 h. The initial ST alloy possessed the full α′-martensitic structure, leading to a low strength, low Young’s modulus, and high ductility. Increasing CA duration increased mechanical strength and Young’s modulus in exchange for the reduction of ductility. Such a tendency is attributed to the decomposition of α′ martensite into (α+β) structure, particularly hard α precipitates. Mechanical compatibility (i.e., Young’s modulus compensated with a mechanical strength) of Ti-13Nb-13Zr alloy rarely increased by changing CA duration, suggestive of the intrinsic limit of static heat treatment.


2016 ◽  
Vol 852 ◽  
pp. 98-103
Author(s):  
P.S. Samuel Ratna Kumar ◽  
S. John Alexis ◽  
D.S. Robinson Smart

The interest in Multiwall Carbon Nanotube (MWCNT) as reinforcement for Aluminium alloy has been growing considerably because of its significant properties such as high Strength, elastic modulus, flexibility and high aspect ratios which makes the combination for being used in aerospace, automobile and marine applications. This work mainly focuses on the theoretical analysis of Strength and Young’s modulus of MWCNT addition with Aluminium 5083 metal matrix composite for different compositions like 1, 1.25, 1.5 and 1.75 weight %, representing that the MWCNT are effective reinforcement. The predicted value shows that, the addition of MWCNT is increasing the Young’s modulus and Strength for the composite compared to the AA5083 (Aluminium alloy).


2001 ◽  
Vol 702 ◽  
Author(s):  
Shigeyasu Amada

ABSTRACTBamboo is a typical composite material which is axially reinforced by very strong fibers. So that, the fibers play an important role for the bamboo structure. The elastic properties of the bamboo culm have been measured only by tensile test so far, which needs a large specimen. Recently ultra-sonic technique, which has a simple procedure and uses a small specimen, has been applied to woods as well as metals. This report reviews about the elastic properties of bamboo and Hemp palm fibers. The Young's modulus and Poisson's ratio of the bamboo fibers are measured by ultra-sonic method with a transmitting wave. On the other hand, the strength of the bamboo and Hemp palm fibers are measured by the tensile tests. Using the volume fraction of fibers in the specimen and mixture principle, the Young's modulus and strength of the fibers and parenchyma were obtained. The fiber has a high strength up to 1GPa and an strong anisotropic property because its axial Young's modulus has 7 times higher than the one in the transverse direction.


2008 ◽  
Vol 1137 ◽  
Author(s):  
Keerthika Balasundaram ◽  
Yanping Cao ◽  
Dierk Raabe

AbstractNanoindentation tests are widely used in recent years to characterize the mechanical properties of viscoelastic-plastic materials like polymers and biomaterials at the micro or nano-scale using the analysis method proposed by Oliver & Pharr (OP). However, recent studies revealed that the mechanical properties of viscoelastic-plastic (polymeric) materials determined using the OP method does not lead to a correct evaluation of Young's modulus. A systematic experimental study is performed with different indenter geometries like spherical and Berkovich geometries using various polymers in order to identify the limitations of the OP method.


2009 ◽  
Vol 618-619 ◽  
pp. 303-306 ◽  
Author(s):  
Zhen Tao Yu ◽  
Gui Wang ◽  
Xi Qun Ma ◽  
Matthew S. Dargusch ◽  
Jian Ye Han ◽  
...  

The effects of alloy chemistry and heat treatment on the microstructure and mechanical properties of Ti-Nb-Zr-Mo-Sn near  type titanium alloys have been investigated. Near β titanium alloys consisting of non-toxic alloying elements Mo, Nb, Zr, Sn possess a low Young’s modulus, and moderate strength and plasticity. As the hot rolled TLM alloy (Ti-25Nb-3Zr-3Mo-2Sn) possesses high strength and low Young’s modulus a detailed investigation is performed for this alloy. Solution treatment of the hot rolled TLM alloy reduces strength and increases ductility without affecting the Young’s modulus. Ageing of the solution treated TLM alloy reduces elongation and increases the Young’s modulus with little change in strength. Both solution treated and aged conditions show features of two stage yielding associated with a strain induced martensitic transformation.


2012 ◽  
Vol 472-475 ◽  
pp. 1813-1817 ◽  
Author(s):  
Yu Lin Yang ◽  
Zhe Yong Fan ◽  
Ning Wei ◽  
Yong Ping Zheng

In this paper the mechanical properties of a series of hydrogen functionalized graphyne are investigated through acting tensile loads on the monolayer networks. Molecular dynamics simulations are performed to calculate the fracture strains and corresponding maximum forces for pristine graphyne along both armchair and zigzag directions. Furthermore, hydrogen functionalized graphynes with different functionalization sites are analyzed to investigate the effect of functionlization on the mechanical performance. Finally, Young's modulus of all the investigated architectures are computed. The obtained results show that monolayer graphyne is mechanically stable with high strength and stiffness, and the mechanical performance can be tuned through structure engineering and functionalization.


Sign in / Sign up

Export Citation Format

Share Document