Climate-driven risks to the climate mitigation potential of forests

Science ◽  
2020 ◽  
Vol 368 (6497) ◽  
pp. eaaz7005 ◽  
Author(s):  
William R. L. Anderegg ◽  
Anna T. Trugman ◽  
Grayson Badgley ◽  
Christa M. Anderson ◽  
Ann Bartuska ◽  
...  

Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions.

2017 ◽  
Vol 10 (12) ◽  
pp. 2491-2499 ◽  
Author(s):  
J. Carlos Abanades ◽  
Edward S. Rubin ◽  
Marco Mazzotti ◽  
Howard J. Herzog

Proposed utilization schemes producing liquid fuels from captured CO2 offer fewer climate mitigation benefits at higher costs than alternative systems.


2021 ◽  
Author(s):  
Florian Schnabel ◽  
Xiaojuan Liu ◽  
Matthias Kunz ◽  
Kathryn E. Barry ◽  
Franca J. Bongers ◽  
...  

AbstractExtreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystems stability is therefore considered crucial to mitigate adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics and diversity in hydraulic traits affect the stability of forest productivity along an experimentally manipulated biodiversity gradient ranging from 1 to 24 tree species. Tree species richness improved stability by increasing species asynchrony. That is at higher species richness, inter-annual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was mediated by the diversity of species’ hydraulic traits in relation to drought tolerance and stomatal control, but not the community-weighted means of these traits. Our results demonstrate important mechanisms by which tree species richness stabilizes forest productivity, thus emphasizing the importance of hydraulically diverse, mixed-species forests to adapt to climate change.


2021 ◽  
Vol 4 ◽  
Author(s):  
John Lynch ◽  
Michelle Cain ◽  
David Frame ◽  
Raymond Pierrehumbert

Agriculture is a significant contributor to anthropogenic global warming, and reducing agricultural emissions—largely methane and nitrous oxide—could play a significant role in climate change mitigation. However, there are important differences between carbon dioxide (CO2), which is a stock pollutant, and methane (CH4), which is predominantly a flow pollutant. These dynamics mean that conventional reporting of aggregated CO2-equivalent emission rates is highly ambiguous and does not straightforwardly reflect historical or anticipated contributions to global temperature change. As a result, the roles and responsibilities of different sectors emitting different gases are similarly obscured by the common means of communicating emission reduction scenarios using CO2-equivalence. We argue for a shift in how we report agricultural greenhouse gas emissions and think about their mitigation to better reflect the distinct roles of different greenhouse gases. Policy-makers, stakeholders, and society at large should also be reminded that the role of agriculture in climate mitigation is a much broader topic than climate science alone can inform, including considerations of economic and technical feasibility, preferences for food supply and land-use, and notions of fairness and justice. A more nuanced perspective on the impacts of different emissions could aid these conversations.


2013 ◽  
Vol 5 (4) ◽  
pp. 317-331 ◽  
Author(s):  
J. Sander ◽  
J. F. Eichner ◽  
E. Faust ◽  
M. Steuer

Abstract Thunderstorm-related normalized economic and insured losses in the United States east of the Rockies from the period 1970–2009 (March–September) exhibit higher peaks and greater variability in the last two decades than in the preceding two decades. To remove the bias from increasingly detected losses over time due to newly built-up locations, only large events that incurred normalized losses of at least $250 million (U.S. dollars) economically ($150 million insured) were selected. These are multistate damage events that are unlikely to have been missed at any time within the analysis period, thus providing for homogeneity of the events covered. Those losses, if aggregated, account for the major proportion (~80%) of all thunderstorm-related losses in the period 1970–2009. This study demonstrates that the pattern of variability in the time series of these losses can be seen as a reflection (“fingerprint”) of the temporal variability in severe thunderstorm forcing. The meteorological information on forcing is inferred from NCEP–NCAR reanalysis data. No final attribution of the climatic variability identified in thunderstorm forcing and losses—either to natural climate variability or to anthropogenic climate change—can be conclusively arrived at in this study because of the chosen methodology. Nevertheless, the expected impacts of anthropogenic climate change on the forcing of convective storms appear consistent with these findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vadim A. Karatayev ◽  
Vítor V. Vasconcelos ◽  
Anne-Sophie Lafuite ◽  
Simon A. Levin ◽  
Chris T. Bauch ◽  
...  

AbstractRecent attempts at cooperating on climate change mitigation highlight the limited efficacy of large-scale negotiations, when commitment to mitigation is costly and initially rare. Deepening existing voluntary mitigation pledges could require more stringent, legally-binding agreements that currently remain untenable at the global scale. Building-blocks approaches promise greater success by localizing agreements to regions or few-nation summits, but risk slowing mitigation adoption globally. Here, we show that a well-timed policy shift from local to global legally-binding agreements can dramatically accelerate mitigation compared to using only local, only global, or both agreement types simultaneously. This highlights the scale-specific roles of mitigation incentives: local agreements promote and sustain mitigation commitments in early-adopting groups, after which global agreements rapidly draw in late-adopting groups. We conclude that focusing negotiations on local legally-binding agreements and, as these become common, a renewed pursuit of stringent, legally-binding world-wide agreements could best overcome many current challenges facing climate mitigation.


Author(s):  
Jonathan Doelman ◽  
Elke Stehfest ◽  
Detlef van Vuuren ◽  
Andrzej Tabeau ◽  
Andries Hof ◽  
...  

<p>Afforestation is considered a cost-effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade-offs with food security are often not considered. Here, we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework (Doelman et al., 2019). In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO<sub>2</sub>/yr at 200 US$/tCO<sub>2</sub> in 2050 leading to large-scale application in an SSP2 scenario aiming for 2°C (410 GtCO<sub>2 </sub>cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock-in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub-Saharan Africa. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade-offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade-offs in order to achieve mitigation sustainably.</p><p>The afforestation study published as Doelman et al. (2019) excluded biophysical climate effects of land use and land cover change on climate, even though this is shown to have a substantial effect especially locally (Alkama & Cescatti, 2016). As a follow-up to this study we implement the grid-specific temperature effects as derived by Duveiller et al. (2020) to the mitigation scenarios with large-scale afforestation to assess the effectiveness of afforestation for climate change mitigation as increased or reduced effectiveness may change cost-optimal climate policy. Notably in the boreal regions this can have a major effect, as transitions from agricultural land to forest are shown to have a substantial warming effect due to reduced albedo limiting the mitigation potential in these regions. Conversely, in the tropical areas the already high mitigation potential of afforestation could be even more efficient, as increased evapotranspiration from forests leads to additional cooling. However, it is uncertain whether the high efficiency of afforestation in tropical regions can be utilized as these are also the regions with high risks to implementation and permanence.</p><p> </p><p>References</p><p>Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604.</p><p>Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., . . . Lucas, P. L. (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology</p><p>Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., & Cescatti, A. (2020). Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers. Land Use Policy, 91, 104382. </p>


2020 ◽  
Vol 375 (1794) ◽  
pp. 20190120 ◽  
Author(s):  
Nathalie Seddon ◽  
Alexandre Chausson ◽  
Pam Berry ◽  
Cécile A. J. Girardin ◽  
Alison Smith ◽  
...  

There is growing awareness that ‘nature-based solutions' (NbS) can help to protect us from climate change impacts while slowing further warming, supporting biodiversity and securing ecosystem services. However, the potential of NbS to provide the intended benefits has not been rigorously assessed. There are concerns over their reliability and cost-effectiveness compared to engineered alternatives, and their resilience to climate change. Trade-offs can arise if climate mitigation policy encourages NbS with low biodiversity value, such as afforestation with non-native monocultures. This can result in maladaptation, especially in a rapidly changing world where biodiversity-based resilience and multi-functional landscapes are key. Here, we highlight the rise of NbS in climate policy—focusing on their potential for climate change adaptation as well as mitigation—and discuss barriers to their evidence-based implementation. We outline the major financial and governance challenges to implementing NbS at scale, highlighting avenues for further research. As climate policy turns increasingly towards greenhouse gas removal approaches such as afforestation, we stress the urgent need for natural and social scientists to engage with policy makers. They must ensure that NbS can achieve their potential to tackle both the climate and biodiversity crisis while also contributing to sustainable development. This will require systemic change in the way we conduct research and run our institutions. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.


Author(s):  
A Barrie Pittock

It is widely accepted in the scientific community that climate change is a reality, and that changes are happening with increasing rapidity. In this second edition, leading climate researcher Barrie Pittock revisits the effects that global warming is having on our planet, in light of ever-evolving scientific research. Presenting all sides of the arguments about the science and possible remedies, Pittock examines the latest analyses of climate change, such as new and alarming observations regarding Arctic sea ice, the recently published IPCC Fourth Assessment Report, and the policies of the new Australian Government and how they affect the implementation of climate change initiatives. New material focuses on massive investments in large-scale renewables, such as the kind being taken up in California, as well as many smaller-scale activities in individual homes and businesses which are being driven by both regulatory and market mechanisms. The book includes extensive endnotes with links to ongoing and updated information, as well as some new illustrations. While the message is clear that climate change is here (and in some areas, might already be having disastrous effects), there is still hope for the future, and the ideas presented here will inspire people to take action. Climate Change: The Science, Impacts and Solutions is an important reference for students in environmental or social sciences, policy makers, and people who are genuinely concerned about the future of our environment.


2021 ◽  
Author(s):  
Zack Parisa ◽  
Eric Marland ◽  
Brent Sohngen ◽  
Gregg Marland ◽  
Jennifer Jenkins

Abstract Widespread concern about the risks of global climate change is increasingly focused on the urgent need for action (IPCC, 2018; IPCC, 2021), and natural climate solutions are a critical component of global strategies to achieve low temperature targets (e.g. Griscom et al. 2017, Roe et al. 2019). Yet to date, the full potential of natural systems to store carbon has not been leveraged because policy-makers have required long-term contracts to compensate for permanence concerns, and these long-term contracts substantially raise costs and limit deployment. In this paper, we lay out the rationale that our time preference for early action embedded in the Global Warming Potentials (GWP) leads to the conclusion that multiple tons of short-term storage of carbon in ecosystem stocks can be considered to have equal value – as measured by the social cost of carbon -- as 1 ton of carbon sequestered permanently. This equivalence can be used to quantify the value of short-term carbon storage, thereby removing one of the most significant barriers to participation in the carbon market and enabling the full climate mitigation potential of the land sector to be realized.


Author(s):  
Helena Fornwagner ◽  
Oliver P. Hauser

AbstractHow do we motivate cooperation across the generations—between parents and children? Here we study voluntary climate action (VCA), which is costly to today’s decision-makers but essential to enable sustainable living for future generations. We predict that “offspring observability” is critical: parents will be more likely to invest in VCA when their own offspring observes their action, whereas when adults or genetically unrelated children observe them, the effect will be smaller. In a large-scale lab-in-the-field experiment, we observe a remarkable magnitude of VCA: parents invest 82% of their 69€ endowment into VCA, resulting in almost 14,000 real trees being planted. Parents’ VCA varies across conditions, with the largest treatment effect occurring when a parent’s own child is the observer. In subgroup analyses, we find that larger treatment effects occur among parents with a high school diploma. Moreover, VCA for parents who believe in climate change is most affected by the presence of their own child. In contrast, VCA of climate change skeptical parents is most influenced by the presence of children to whom they are not related. Our findings have implications for policy-makers interested in designing programs to encourage voluntary climate action and sustaining intergenerational public goods.


Sign in / Sign up

Export Citation Format

Share Document