scholarly journals Phonon hydrodynamics and ultrahigh–room-temperature thermal conductivity in thin graphite

Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. 309-312 ◽  
Author(s):  
Yo Machida ◽  
Nayuta Matsumoto ◽  
Takayuki Isono ◽  
Kamran Behnia

Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room-temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin—a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum-relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.

1981 ◽  
Vol 9 ◽  
Author(s):  
Roger K. Crouch ◽  
A. L. Fripp ◽  
W. J. Debnam ◽  
R. E. Taylor ◽  
H. Groot

ABSTRACTThe thermal diffusivity of Ge has been measured over a temperature range from 300° C to 1010° C which includes values for the melt. Specific heat has been measured from room temperature to 727° C. Thermal conductivity has been calculated over the same temperature range as the diffusivity measurements. These data are reported along with the best values from the literature for the other parameters which are required to calculate the temperature and convective fields for the growth of germanium by the Bridgman method. These parameters include the specific heat, the viscosity, the emissivity, and the density as a function of temperature.


2008 ◽  
Vol 46 (5) ◽  
pp. 731-733 ◽  
Author(s):  
S. V. Stankus ◽  
I. V. Savchenko ◽  
A. V. Baginskii ◽  
O. I. Verba ◽  
A. M. Prokop’ev ◽  
...  

Author(s):  
Huaqing Xie ◽  
An Cai ◽  
Xinwei Wang

A laser flash technique was applied to measure the thermal diffusivity along a multi-walled carbon nanotube (CNT) array in temperature range of −55∼200 °C. In the measurements, a nanosecond pulsed laser was used to realize noncontact heating and the temperature variations were recorded by an infrared detector. The experimental results show that the thermal diffusivity of the CNT array increases slightly with temperature in the −55∼70 °C temperature range and exhibits no obvious change in the −75∼200 °C temperature range. The CNT array has much larger thermal diffusivity than several known excellent thermal conductors, reaching about 4.6 cm2s−1 at room temperature. The mean thermal conductivity (λ) of individual CNTs was further estimated from the thermal diffusivity, specific heat (Cp), and density (ρ) by using the correlation of λ = αρCp. The thermal conductivity of individual CNTs increases smoothly with the temperature increase, reaching about 750 Wm−1K−1 at room temperature.


2020 ◽  
Vol 62 (7) ◽  
pp. 1137
Author(s):  
Р.Г. Митаров ◽  
С.Н. Каллаев ◽  
А.М. Бакмаев ◽  
С.А. Резниченко ◽  
А.Т. Темиров

The temperature dependence of the thermal diffusivity and thermal conductivity of the multiferroics BiFeO3, Bi0.90Sm0.10FeO3 and Bi0.90Еu0.10FeO3 is studied. It was found that the substitution of bismuth ions by the rare-earth europium and samarium ions in bismuth ferrite leads to a decrease in phonon thermal conductivity in a wide temperature range. It was established that the decrease in the thermal conductivity of bismuth ferrite is due to resonance scattering of phonons at paramagnetic levels of europium and samarium ions.


2010 ◽  
Vol 14 (2) ◽  
pp. 417-423 ◽  
Author(s):  
Nenad Milosevic

Paper presents results of measuring thermal diffusivity of translucent or partially transparent thin discs of non-metals such as alumina and silicon using most widely spread experimental technique, the standard laser pulse method. Difficulties in its application to such materials are discussed. The thermal diffusivity has been measured from room temperature up to 900?C for alumina, and to 1200?C for silicon. Obtained results are analyzed and compared with available literature data and existing recommended functions.


2009 ◽  
Vol 24 (2) ◽  
pp. 430-435 ◽  
Author(s):  
D. Li ◽  
H.H. Hng ◽  
J. Ma ◽  
X.Y. Qin

The thermoelectric properties of Nb-doped Zn4Sb3 compounds, (Zn1–xNbx)4Sb3 (x = 0, 0.005, and 0.01), were investigated at temperatures ranging from 300 to 685 K. The results showed that by substituting Zn with Nb, the thermal conductivities of all the Nb-doped compounds were lower than that of the pristine β-Zn4Sb3. Among the compounds studied, the lightly substituted (Zn0.995Nb0.005)4Sb3 compound exhibited the best thermoelectric performance due to the improvement in both its electrical resistivity and thermal conductivity. Its figure of merit, ZT, was greater than the undoped Zn4Sb3 compound for the temperature range investigated. In particular, the ZT of (Zn0.995Nb0.005)4Sb3 reached a value of 1.1 at 680 K, which was 69% greater than that of the undoped Zn4Sb3 obtained in this study.


2012 ◽  
Vol 501 ◽  
pp. 319-323
Author(s):  
Hasan A. Alwi ◽  
Lay S. Ewe ◽  
Zahari Ibrahim ◽  
Noor B. Ibrahim ◽  
Roslan Abd-Shukor

We report the room temperature thermal conductivity κ and thermal diffusivity α of polycrystalline La0.7Ca0.3-xSrxMnO3 for x = 0 to 0.1. The samples were prepared by heating at 1220 and 1320oC. The insulator-metal transition temperature, TIM and thermal diffusivity increased with Sr content. Phonon was the dominant contributor to thermal conductivity and the electronic contribution was less than 1%. Enhancement of electrical conductivity σ and thermal diffusivity for x ≥ 0.08 was observed in both series of samples. The grain size of the samples (28 to 46 µm) does not show any affect on the thermal and electrical properties.


2017 ◽  
Vol 8 (18) ◽  
pp. 2806-2814 ◽  
Author(s):  
Youngsu Kim ◽  
Hyeonuk Yeo ◽  
Nam-Ho You ◽  
Se Gyu Jang ◽  
Seokhoon Ahn ◽  
...  

Liquid crystalline epoxy resins with a wide temperature range exhibit a high thermal conductivity of 0.4 W m−1 K−1.


Sign in / Sign up

Export Citation Format

Share Document