scholarly journals Measles virus and rinderpest virus divergence dated to the sixth century BCE

Science ◽  
2020 ◽  
Vol 368 (6497) ◽  
pp. 1367-1370 ◽  
Author(s):  
Ariane Düx ◽  
Sebastian Lequime ◽  
Livia Victoria Patrono ◽  
Bram Vrancken ◽  
Sengül Boral ◽  
...  

Many infectious diseases are thought to have emerged in humans after the Neolithic revolution. Although it is broadly accepted that this also applies to measles, the exact date of emergence for this disease is controversial. We sequenced the genome of a 1912 measles virus and used selection-aware molecular clock modeling to determine the divergence date of measles virus and rinderpest virus. This divergence date represents the earliest possible date for the establishment of measles in human populations. Our analyses show that the measles virus potentially arose as early as the sixth century BCE, possibly coinciding with the rise of large cities.

Author(s):  
Ariane Düx ◽  
Sebastian Lequime ◽  
Livia Victoria Patrono ◽  
Bram Vrancken ◽  
Sengül Boral ◽  
...  

AbstractMany infectious diseases are thought to have emerged in humans after the Neolithic revolution. While it is broadly accepted that this also applies to measles, the exact date of emergence for this disease is controversial. Here, we sequenced the genome of a 1912 measles virus and used selection-aware molecular clock modeling to determine the divergence date of measles virus and rinderpest virus. This divergence date represents the earliest possible date for the establishment of measles in human populations. Our analyses show that the measles virus potentially arose as early as the 4th century BCE, rekindling the recently challenged hypothesis of an antique origin of this disease.One Sentence SummaryMeasles virus diverged from rinderpest virus in the 4th century BCE, which is compatible with an emergence of measles during Antiquity.


2020 ◽  
Vol 37 (9) ◽  
pp. 2691-2698 ◽  
Author(s):  
Xiaoming Liu

Abstract The prehistoric demography of human populations is an essential piece of information for illustrating our evolution. Despite its importance and the advancement of ancient DNA studies, our knowledge of human evolution is still limited, which is also the case for relatively recent population dynamics during and around the Holocene. Here, we inferred detailed demographic histories from 1 to 40 ka for 24 population samples using an improved model-flexible method with 36 million genome-wide noncoding CpG sites. Our results showed many population growth events that were likely due to the Neolithic Revolution (i.e., the shift from hunting and gathering to agriculture and settlement). Our results help to provide a clearer picture of human prehistoric demography, confirming the significant impact of agriculture on population expansion, and provide new hypotheses and directions for future research.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3000506
Author(s):  
Olga Krylova ◽  
David J. D. Earn

Smallpox is unique among infectious diseases in the degree to which it devastated human populations, its long history of control interventions, and the fact that it has been successfully eradicated. Mortality from smallpox in London, England was carefully documented, weekly, for nearly 300 years, providing a rare and valuable source for the study of ecology and evolution of infectious disease. We describe and analyze smallpox mortality in London from 1664 to 1930. We digitized the weekly records published in the London Bills of Mortality (LBoM) and the Registrar General’s Weekly Returns (RGWRs). We annotated the resulting time series with a sequence of historical events that might have influenced smallpox dynamics in London. We present a spectral analysis that reveals how periodicities in reported smallpox mortality changed over decades and centuries; many of these changes in epidemic patterns are correlated with changes in control interventions and public health policies. We also examine how the seasonality of reported smallpox mortality changed from the 17th to 20th centuries in London.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nhat Thanh Hoang Le ◽  
Nhan Thi Ho ◽  
Bryan Grenfell ◽  
Stephen Baker ◽  
Ronald B. Geskus

Abstract Background Infection with measles virus (MeV) causes immunosuppression and increased susceptibility to other infectious diseases. Only few studies reported a duration of immunosuppression, with varying results. We investigated the effect of immunosuppression on the incidence of hospital admissions for infectious diseases in Vietnamese children. Methods We used retrospective data (2005 to 2015; N = 4419) from the two pediatric hospitals in Ho Chi Minh City, Vietnam. We compared the age-specific incidence of hospital admission for infectious diseases before and after hospitalization for measles. We fitted a Poisson regression model that included gender, current age, and time since measles to obtain a multiplicative effect measure. Estimates were transformed to the additive scale. Results We observed two phases in the incidence of hospital admission after measles. The first phase started with a fourfold increased rate of admissions during the first month after measles, dropping to a level quite comparable to children of the same age before measles. In the second phase, lasting until at least 6 years after measles, the admission rate decreased further, with values up to 20 times lower than in children of the same age before measles. However, on the additive scale the effect size in the second phase was much smaller than in the first phase. Conclusion The first phase highlights the public health benefits of measles vaccination by preventing measles and immune amnesia. The beneficial second phase is interesting, but its strength strongly depends on the scale. It suggests a complicated interaction between MeV infection and the host immunity.


1928 ◽  
Vol 8 ◽  
pp. 1-15
Author(s):  
James Coffin Stout

In the Lateran Museum at Rome perhaps the largest and most interesting collection of ancient Christian sarcophagi in the world has been gathered together. It is hard to say just how many different specimens are represented. At least thirty-eight are more or less complete; and there are, besides, numerous fragments of others, some of which have doubtless been reckoned in the larger estimates sometimes given. A few were found in the various catacombs which like the encampments of a besieging army encircle the walls of Rome. The majority came from the early basilicas, which sprang up so rapidly after Constantine's Edict had proclaimed that the victory of these Christian hosts had indeed been won. It would be difficult to assign an exact date to many of these sarcophagi; but in general it may be said that they represent the fourth and fifth centuries, with a few specimens from still earlier generations, and a few others which reach forward into the sixth century.


2018 ◽  
Vol 92 (23) ◽  
Author(s):  
Nurshariza Abdullah ◽  
James T. Kelly ◽  
Stephen C. Graham ◽  
Jamie Birch ◽  
Daniel Gonçalves-Carneiro ◽  
...  

ABSTRACTMorbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)—the small-ruminant morbillivirus—is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1—the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement forin situderivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCEA significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus’s evolution in the field. Of note, this study was undertakenin vitro, without generation of a fully infectious virus with this phenotype.


2005 ◽  
Vol 86 (4) ◽  
pp. 1077-1081 ◽  
Author(s):  
D. D. Brown ◽  
F. M. Collins ◽  
W. P. Duprex ◽  
M. D. Baron ◽  
T. Barrett ◽  
...  

Chloramphenicol acetyltransferase (CAT)-expressing negative-sense mini-genomic constructs of measles virus (MV) and rinderpest virus (RPV) were rescued by standard technology with helper plasmids expressing the nucleocapsid (N), phospho- (P) and large (L) proteins of MV, canine distemper virus (CDV) or RPV in order to determine whether the proteins of different viruses can function together. Homogeneous sets consisting of N, P and L plasmids derived from one virus were able to generate reporter gene expression from either mini-genomic construct. Heterogeneous sets of proteins from different viruses were not functional, with the exception that a low level of activity was obtained when MV N and P protein were combined with RPV L protein in the rescue of the MV mini-genomic construct, or CDV N was combined with RPV P and L in the rescue of the RPV mini-genome. However, only homogeneous sets of plasmids were able to rescue infectious virus from full-length anti-genome-expressing plasmids.


2001 ◽  
Vol 75 (13) ◽  
pp. 5842-5850 ◽  
Author(s):  
Hironobu Tatsuo ◽  
Nobuyuki Ono ◽  
Yusuke Yanagi

ABSTRACT Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses.


Sign in / Sign up

Export Citation Format

Share Document