A phosphorylation-regulated eIF3d translation switch mediates cellular adaptation to metabolic stress

Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 853-856
Author(s):  
Adam M. Lamper ◽  
Rebecca H. Fleming ◽  
Kayla M. Ladd ◽  
Amy S. Y. Lee

Shutoff of global protein synthesis is a conserved response to cellular stresses. This general phenomenon is accompanied by the induction of distinct gene programs tailored to each stress. Although the mechanisms driving repression of general protein synthesis are well characterized, how cells reprogram the translation machinery for selective gene expression remains poorly understood. Here, we found that the noncanonical 5′ cap-binding protein eIF3d was activated in response to metabolic stress in human cells. Activation required reduced CK2-mediated phosphorylation near the eIF3d cap-binding pocket. eIF3d controls a gene program enriched in factors important for glucose homeostasis, including members of the mammalian target of rapamycin (mTOR) pathway. eIF3d-directed translation adaptation was essential for cell survival during chronic glucose deprivation. Thus, this mechanism of translation reprogramming regulates the cellular response to metabolic stress.

2011 ◽  
Vol 39 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Yilin Huo ◽  
Valentina Iadevaia ◽  
Christopher G. Proud

mTOR (mammalian target of rapamycin) forms two distinct types of complex, mTORC (mTOR complex) 1 and 2. Rapamycin inhibits some of the functions of mTORC1, whereas newly developed mTOR kinase inhibitors interfere with the actions of both types of complex. We have explored the effects of rapamycin and mTOR kinase inhibitors on general protein synthesis and, using a new stable isotope-labelling method, the synthesis of specific proteins. In HeLa cells, rapamycin only had a modest effect on total protein synthesis, whereas mTOR kinase inhibitors decreased protein synthesis by approx. 30%. This does not seem to be due to the ability of mTOR kinase inhibitors to block the binding of eIFs (eukaryotic initiation factors) eIF4G and eIF4E. Analysis of the effects of the inhibitors on the synthesis of specific proteins showed a spectrum of behaviours. As expected, synthesis of proteins encoded by mRNAs that contain a 5′-TOP (5′-terminal oligopyrimidine tract) was impaired by rapamycin, but more strongly by mTOR kinase inhibition. Several proteins not known to be encoded by 5′-TOP mRNAs also showed similar behaviour. Synthesis of proteins encoded by ‘non-TOP’ mRNAs was less inhibited by mTOR kinase inhibitors and especially by rapamycin. The implications of our findings are discussed.


1974 ◽  
Vol 62 (2) ◽  
pp. 390-405 ◽  
Author(s):  
H. Paul Ehrlich ◽  
Russell Ross ◽  
Paul Bornstein

Embryonic chick cranial bone was cultured in the presence of the antimicrotubular agents, colchicine and vinblastine, and with a number of other compounds known from previous studies to affect the cellular handling of collagen. Secretion of procollagen, quantitated by light microscope autoradiography, was correlated with the extent of conversion of procollagen to collagen and with rates of collagen and noncollagen-protein synthesis. Colchicine inhibited procollagen secretion and conversion to collagen and specifically inhibited collagen synthesis. Cells exposed to colchicine revealed an increased number of dilated Golgi-associated vacuoles and vesicles, some of which contained parallel aggregates of filamentous structures. These observations suggest that the pathway of at least a fraction of procollagen secretion by osteoblasts includes the Golgi complex. Disruption of microtubules may interfere with the movement of Golgi-derived vesicles, and the resulting accumulation of collagen precursors in the Golgi complex may lead secondarily to an inhibition of synthesis. Although vinblastine also inhibited both procollagen secretion and conversion to collagen, the observed reduction in general protein synthesis and striking changes in the ultrastructure of the rough endoplasmic reticulum complicated interpretation of the effects. Interpretation of the effects of cytochalasin B was limited by the finding that the cellular response in cranial bone was markedly heterogeneous and that, contrary to some previous reports, the drug caused an inhibition in the incorporation of radiolabeled amino acids into both collagen and noncollagen protein.


1981 ◽  
Vol 194 (1) ◽  
pp. 249-255 ◽  
Author(s):  
B Mittal ◽  
C K R Kurup

Administration of the anti-hypercholesterolaemic drug clofibrate to the rat increases the activity of carnitine acetyltransferase (acetyl-CoA-carnitine O-acetyltransferase, EC 2.3.1.7) in liver and kidney. The drug-mediated increase in enzyme activity in hepatic mitochondria shows a time lag during which the activity increases in the microsomal and peroxisomal fractions. The enzyme induced in the particulate fractions is identical with one normally present in mitochondria. The increase in enzyme activity is prevented by inhibitors of RNA and general protein synthesis. Mitochondrial protein-synthetic machinery does not appear to be involved in the process. Immunoprecipitation shows increased concentration of the enzyme protein in hepatic mitochondria isolated from drug-treated animals. In these animals, the rate of synthesis of the enzyme is increased 7-fold.


2001 ◽  
Vol 355 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Diana L. LEFEBVRE ◽  
Yahong BAI ◽  
Nazanin SHAHMOLKY ◽  
Monika SHARMA ◽  
Raymond POON ◽  
...  

Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and reverse-transcriptase-mediated PCR demonstrated that mRNA transcripts for the SNF1/AMPK-related kinase (SNARK) were widely expressed in rodent tissues. The SNARK gene was localized to human chromosome 1q32 by fluorescent in situ hybridization. SNARK was translated in vitro to yield a single protein band of approx. 76kDa; Western analysis of transfected baby hamster kidney (BHK) cells detected two SNARK-immunoreactive bands of approx. 76-80kDa. SNARK was capable of autophosphorylation in vitro; immunoprecipitated SNARK exhibited phosphotransferase activity with the synthetic peptide substrate HMRSAMSGLHLVKRR (SAMS) as a kinase substrate. SNARK activity was significantly increased by AMP and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) in rat keratinocyte cells, implying that SNARK might be activated by an AMPK kinase-dependent pathway. Furthermore, glucose deprivation increased SNARK activity 3-fold in BHK fibroblasts. These findings identify SNARK as a glucose- and AICAriboside-regulated member of the AMPK-related gene family that represents a new candidate mediator of the cellular response to metabolic stress.


2016 ◽  
Vol 37 (4) ◽  
Author(s):  
Courtney M. Karner ◽  
Seung-Yon Lee ◽  
Fanxin Long

ABSTRACT The bone morphogenetic protein (Bmp) family of secreted molecules has been extensively studied in the context of osteoblast differentiation. However, the intracellular signaling cascades that mediate the osteoblastogenic function of Bmp have not been fully elucidated. By profiling mRNA expression in the bone marrow mesenchymal progenitor cell line ST2, we discover that BMP2 induces not only genes commonly associated with ossification and mineralization but also genes important for general protein synthesis. We define the two groups of genes as mineralization related versus protein anabolism signatures of osteoblasts. Although it induces the expression of several Wnt genes, BMP2 activates the osteogenic program largely independently of de novo Wnt secretion. Remarkably, although Smad4 is necessary for the activation of the mineralization-related genes, it is dispensable for BMP2 to induce the protein anabolism signature, which instead critically depends on the transcription factor Atf4. Upstream of Atf4, BMP2 activates mTORC1 to stimulate protein synthesis, resulting in an endoplasmic reticulum stress response mediated by Perk. Thus, Bmp signaling induces osteoblast differentiation through both Smad4- and mTORC1-dependent mechanisms.


2014 ◽  
Vol 26 (6) ◽  
pp. 2582-2600 ◽  
Author(s):  
Gang Wang ◽  
Jushan Zhang ◽  
Guifeng Wang ◽  
Xiangyu Fan ◽  
Xin Sun ◽  
...  

2013 ◽  
Vol 109 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Charles A. Hoeffer ◽  
Emanuela Santini ◽  
Tao Ma ◽  
Elizabeth C. Arnold ◽  
Ashley M. Whelan ◽  
...  

Persistent forms of synaptic plasticity are widely thought to require the synthesis of new proteins. This feature of long-lasting forms of plasticity largely has been demonstrated using inhibitors of general protein synthesis, such as either anisomycin or emetine. However, these drugs, which inhibit elongation, cannot address detailed questions about the regulation of translation initiation, where the majority of translational control occurs. Moreover, general protein synthesis inhibitors cannot distinguish between cap-dependent and cap-independent modes of translation initiation. In the present study, we took advantage of two novel compounds, 4EGI-1 and hippuristanol, each of which targets a different component of the eukaryotic initiation factor (eIF)4F initiation complex, and investigated their effects on long-term potentiation (LTP) at CA3-CA1 synapses in the hippocampus. We found that 4EGI-1 and hippuristanol both attenuated long-lasting late-phase LTP induced by two different stimulation paradigms. We also found that 4EGI-1 and hippuristanol each were capable of blocking the expression of newly synthesized proteins immediately after the induction of late-phase LTP. These new pharmacological tools allow for a more precise dissection of the role played by translational control pathways in synaptic plasticity and demonstrate the importance of multiple aspects of eIF4F in processes underlying hippocampal LTP, laying the foundation for future studies investigating the role of eIF4F in hippocampus-dependent memory processes.


1986 ◽  
Vol 6 (4) ◽  
pp. 1088-1094
Author(s):  
R B Widelitz ◽  
B E Magun ◽  
E W Gerner

A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document