scholarly journals Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis

Science ◽  
2020 ◽  
Vol 371 (6525) ◽  
pp. eabd0695 ◽  
Author(s):  
Isai Salas-González ◽  
Guilhem Reyt ◽  
Paulina Flis ◽  
Valéria Custódio ◽  
David Gopaulchan ◽  
...  

Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plant Arabidopsis thaliana contribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota’s capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 402
Author(s):  
Qianqian Chen ◽  
Weiwei Wu ◽  
Tong Zhao ◽  
Wenqi Tan ◽  
Jiang Tian ◽  
...  

Proton toxicity is one of the major environmental stresses limiting crop production and becomes increasingly serious because of anthropogenic activities. To understand acid tolerance mechanisms, the plant growth, mineral nutrients accumulation, and global transcriptome changes in soybean (Glycine max) in response to long-term acidity stress were investigated. Results showed that acidity stress significantly inhibited soybean root growth but exhibited slight effects on the shoot growth. Moreover, concentrations of essential mineral nutrients were significantly affected by acidity stress, mainly differing among soybean organs and mineral nutrient types. Concentrations of phosphorus (P) and molybdenum (Mo) in both leaves and roots, nitrogen (N), and potassium (K) in roots and magnesium (Mg) in leaves were significantly decreased by acidity stress, respectively. Whereas, concentrations of calcium (Ca), sulfate (S), and iron (Fe) were increased in both leaves and roots. Transcriptome analyses in soybean roots resulted in identification of 419 up-regulated and 555 down-regulated genes under acid conditions. A total of 38 differentially expressed genes (DEGs) were involved in mineral nutrients transportation. Among them, all the detected five GmPTs, four GmZIPs, two GmAMTs, and GmKUPs, together with GmIRT1, GmNramp5, GmVIT2.1, GmSKOR, GmTPK5, and GmHKT1, were significantly down-regulated by acidity stress. Moreover, the transcription of genes encoding transcription factors (e.g., GmSTOP2s) and associated with pH stat metabolic pathways was significantly up-regulated by acidity stress. Taken together, it strongly suggests that maintaining pH stat and mineral nutrient homeostasis are adaptive strategies of soybean responses to acidity stress, which might be regulated by a complex signaling network.



2021 ◽  
Vol 22 (18) ◽  
pp. 10166
Author(s):  
Gianpiero Vigani ◽  
Monirul Islam ◽  
Viviana Cavallaro ◽  
Fabio F. Nocito ◽  
Massimo E. Maffei

The geomagnetic field (GMF) is an environmental factor affecting the mineral nutrient uptake of plants and a contributing factor for efficient iron (Fe) uptake in Arabidopsis seedlings. Understanding the mechanisms underlining the impact of the environment on nutrient homeostasis in plants requires disentangling the complex interactions occurring among nutrients. In this study we investigated the effect of GMF on the interplay between iron (Fe) and sulfur (S) by exposing Arabidopsis thaliana plants grown under single or combined Fe and S deficiency, to near-null magnetic field (NNMF) conditions. Mineral analysis was performed by ICP-MS and capillary electrophoresis, whereas the expression of several genes involved in Fe and S metabolism and transport was assayed by qRT-PCR. The results show that NNMF differentially affects (i) the expression of some Fe- and S-responsive genes and (ii) the concentration of metals in plants, when compared with GMF. In particular, we observed that Cu content alteration in plant roots depends on the simultaneous variation of nutrient availability (Fe and S) and MF intensity (GMF and NNMF). Under S deficiency, NNMF-exposed plants displayed variations of Cu uptake, as revealed by the expression of the SPL7 and miR408 genes, indicating that S availability is an important factor in maintaining Cu homeostasis under different MF intensities. Overall, our work suggests that the alteration of metal homeostasis induced by Fe and/or S deficiency in reduced GMF conditions impacts the ability of plants to grow and develop.



2020 ◽  
Author(s):  
Min Gao ◽  
Chao Xiong ◽  
Cheng Gao ◽  
Clement K.M. Tsui ◽  
Xin Zhou ◽  
...  

Abstract Background: Plant microbiome is an integral part of the host influencing its growth and health. The increasing evidence indicates that plant rhizosphere may recruit beneficial microbes to suppress soil-borne pathogen, but the ecological mechanisms that govern plant microbiome assembly and functions under disease in both below and aboveground compartments are not fully understood. Here we examined both bacterial and fungal communities from soils (rhizosphere and bulk soil) and multiple plant compartments (e.g. root, stem, and fruit) of chili pepper (Capsicum annuum L.) at two pepper production sites, and explored how Fusarium wilt disease (FWD) affect the assembly, co-occurrence patterns, and ecological functions of plant-associated microbiomes. Results: Our data demonstrated that FWD had less impact on reproductive organ (fruit) than on vegetative organs (root and stem), with the strongest impact in the stem upper epidermis. Fungal intra-kingdom networks presented lower stabilities and their communities were more sensitive to FWD than the bacterial communities. Moreover, the diseased pepper was more susceptible to colonization by other pathogenic fungi, but they may recruit potential beneficial bacteria to facilitate host or offspring survival, and FWD may enhance the ecological importance of fungal taxa in the interkingdom network. Further, metagenomic analysis revealed that several potential protective functional genes encoding detoxify and biofilm formation were significantly enriched in the diseased pepper.Conclusion: Together, these results significantly advance our understanding of pepper microbiome assembly and functions under biotic stress. Our work highlights the diseased plant and the aboveground compartments harbor a potential of beneficial microbiomes and functions that, in concert, can provide potential critical data for harnessing the plant microbiome for sustainable agriculture.



eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Alexandre Pfister ◽  
Marie Barberon ◽  
Julien Alassimone ◽  
Lothar Kalmbach ◽  
Yuree Lee ◽  
...  

The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)—major players of endodermal differentiation—into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.



2021 ◽  
Author(s):  
Nicholas C. Dove ◽  
Dawn M. Klingeman ◽  
Alyssa A. Carrell ◽  
Melissa A. Cregger ◽  
Christopher W. Schadt


Author(s):  
Guilhem Reyt ◽  
Zhenfei Chao ◽  
Paulina Flis ◽  
Gabriel Castrillo ◽  
Dai-Yin Chao ◽  
...  

AbstractCasparian strips (CS) are cell wall modifications of vascular plants restricting extracellular free diffusion into and out the vascular system. This barrier plays a critical role in controlling the acquisition of nutrients and water necessary for normal plant development. CS are formed by the precise deposition of a band of lignin approximately 2 μm wide and 150 nm thick spanning the apoplastic space between adjacent endodermal cells. Here, we identified a copper-containing protein, Uclacyanin1 (UCC1) that is sub-compartmentalised within the CS. UCC1 forms a central CS nanodomain in comparison with other CS-located proteins that are found to be mainly accumulated at the periphery of the CS. We found that loss-of-function of two uclacyanins (UCC1 and UCC2) reduces lignification specifically in this central CS nanodomain, revealing a nano-compartmentalised machinery for lignin polymerisation. This lack of lignification leads to increased endodermal permeability, and consequently to a loss of mineral nutrient homeostasis.



Sign in / Sign up

Export Citation Format

Share Document