scholarly journals Barcoded viral tracing of single-cell interactions in central nervous system inflammation

Science ◽  
2021 ◽  
Vol 372 (6540) ◽  
pp. eabf1230 ◽  
Author(s):  
Iain C. Clark ◽  
Cristina Gutiérrez-Vázquez ◽  
Michael A. Wheeler ◽  
Zhaorong Li ◽  
Veit Rothhammer ◽  
...  

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.

2016 ◽  
Author(s):  
◽  
Christopher M. Owens

Injuries to nerves vary in their consequences, from weakened sensation and motor function to partial or complete paralysis. In the latter case, affecting about twenty thousand Americans yearly, the injury is debilitating and results in a significant decrease in quality of life. Currently there is no effective treatment for damage to the central nervous system, in particular the spinal cord. Compared to the injuries to the central nervous system, damage in the peripheral nerves, is more common, with about sixty thousand occurrences annually. The cost of associated surgical procedures and due to loss of function is in the billions. In this thesis we present work towards the construction and testing of a fully cellular, patented nerve graft, one amongst the first of its kind. For the fabrication of the graft we are the first to employ bioprinting (either implemented through a special purpose 3D bioprinter or manually), a novel tissue engineering method rapidly gaining acceptance and utility. We first review the status of bioprinting. We then detail the fabrication process. Next we report on the testing of the graft in an in vivo animal model through electrophysiology and histology. This is followed by the introduction of a novel in vitro model, aimed at providing a fast, inexpensive and reliable method to test engineered nerve grafts. We describe our work on the optimization of the in vitro assay and then the testing of the graft using the optimized assay. We conclude with a summary of our accomplishments and make suggestions for some exciting future applications of our approach.


1975 ◽  
Vol 228 (5) ◽  
pp. 1510-1518 ◽  
Author(s):  
R Spector ◽  
AV Lorenzo

Free myo-inositol (inositol) transport into the cerebrospinal fluid (CSF), brain, and choroid plexus and out of the cerebrospinal fluid was measured in rabbits. In vivo, inositol transport from blood into choroid plexus, CSF, and brain was saturable with an apparent affinity constant (K-t) of approximately 0.1 mM. The relative turnover of free inositol in choroid plexus (16 percent/h) was higher than in CSF 4percent/h) and brain (0.3percent/h) when meausred by tissue penetration of tracer [3-H]-labeled inositol injected into blood. However, the passage of tracer inositol was not greater than the passage of mannitol into brain when measured 15 s after a rapid injection of inositol and mannitol into the left common carotid artery. From the CSF, the clearance of inositol relative to inulin was saturable after the intraventricular injection of various concentrations of inositol and inulin. Moreover, a portion of the inositol cleared from the CSF entered brain by a saturable mechanism. In vitro, choroid plexuses, isolated from rabbits and incubated in artificial CSF, accumulated [3-H-labeled myo-inositol against a concentration gradient by a specific, active, saturable process with a K-t of 0.2 mM inositol. These results were interpreted as showing that the entry of inositol into the central nervous system from blood is regulated by a saturable transport system, and that the locus of this system may be, in part, in the choroid plexus.


2020 ◽  
Vol 17 (3) ◽  
pp. 1142-1152 ◽  
Author(s):  
Karl E. Carlström ◽  
Praveen K. Chinthakindi ◽  
Belén Espinosa ◽  
Faiez Al Nimer ◽  
Elias S. J. Arnér ◽  
...  

Abstract The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1–CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform. The novel sulfoximine CH-3 was the most promising candidate and selected for further comparison in vivo and later an experimental model for traumatic brain injury (TBI). CH-3 and DMF displayed comparable capacity to activate Nrf2 and downstream transcripts in vitro, but with less off-target effects on HIF1 from CH-3. This was verified in cultured microglia and oligodendrocytes (OLs) and subsequently in vivo in rats. Following TBI, DMF lowered the number of leukocytes in blood and also decreased axonal degeneration. CH-3 preserved or increased the number of pre-myelinating OL. While both CH-3 and DMF activated Nrf2, CH-3 showed less off-target effects and displayed more selective OL associated effects. Further studies with Nrf2-acting compounds are promising candidates to explore potential myelin protective or regenerative effects in demyelinating disorders.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1542
Author(s):  
Felix Neumaier ◽  
Boris D. Zlatopolskiy ◽  
Bernd Neumaier

Delivery of most drugs into the central nervous system (CNS) is restricted by the blood–brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.


2018 ◽  
Vol 47 (2) ◽  
pp. 842-850 ◽  
Author(s):  
Bo Hu ◽  
Guangtao Xu ◽  
Xiaomin Zhang ◽  
Long Xu ◽  
Hong Zhou ◽  
...  

Background/Aims: Paeoniflorin (PF) is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA)-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.


1983 ◽  
Vol 244 (4) ◽  
pp. R487-R491
Author(s):  
B. R. Walker

Both in vitro and in vivo experiments suggest that prostaglandins may affect antidiuretic hormone (ADH) release centrally. In addition, other studies show that prostaglandins administered peripherally may cause ADH release. However, these latter studies have been flawed by hemodynamic alterations and the use of anesthetics, which make interpretation difficult. The present study was designed to test for involvement of prostaglandins produced outside the central nervous system in ADH release in conscious dogs. Administration of meclofenamate (2 mg/kg and 2 mg X kg-1 X h 1, iv) resulted in a consistent fall in plasma ADH levels in five dogs. This diminution of ADH release occurred with no change in systemic hemodynamics, arterial blood gases, or plasma osmolality, suggesting that prostaglandins are important mediators of basal ADH release in the conscious dog. Because meclofenamate does not cross the blood-brain barrier, prostaglandins produced outside the central nervous system appear to be involved in this process. The specific prostaglandin involved or the site of action of prostaglandins on ADH release is not clear at this time.


1994 ◽  
Vol 5 (5) ◽  
pp. 304-311 ◽  
Author(s):  
K. J. Doshi ◽  
F. D. Boudinot ◽  
J. M. Gallo ◽  
R. F. Schinazi ◽  
C. K. Chu

Lipophilic 6-halo-2′,3′-dideoxypurine nucleosides may be useful prodrugs for the targeting of 2′,3′-dideoxyinosine (ddl) to the central nervous system. The purpose of this study was to evaluate the potential effectiveness of 6-chloro-2′,3′-dideoxypurine (6-CI-ddP) for the targeting of ddl to the brain. In vitro studies indicated that the adenosine deaminase-mediated biotransformation of 6-CI-ddP to ddl was more rapid in mouse brain homogenate than in mouse serum. The brain distribution of 6-CI-ddP and ddl was assessed in vivo in mice following intravenous and oral administration of the prodrug or parent drug. Brain concentrations of ddl were similar after intravenous administration of 6-CI-ddP or ddl. However, after oral administration of the 6-CI-ddP prodrug, significantly greater concentrations of ddl were seen in the brain compared to those found after oral administration of ddl. The brain:serum AUG ratio (expressed as a percentage) of ddl after intravenous administration of 50 mg kg−1 of the active nucleoside was 3%. Following oral administration of 250 mg kg−1 ddl, low concentrations of ddl were detected in the brain. Brain:serum AUC ratios following intravenous and oral administration of the prodrug 6-CI-ddP were 19–25%. Thus, brain:serum AUC ratios were 6- to 8-fold higher after prodrug administration than those obtained after administration of the parent nucleoside. Oral administration of 6-CI-ddP yielded concentrations of ddl in the brain similar to those obtained following intravenous administration. The results of this study provide further evidence that 6-CI-ddP may be a useful prodrug for delivering ddl to the central nervous system, particularly after oral administration.


Sign in / Sign up

Export Citation Format

Share Document