Kindlin-3 disrupts an intersubunit association in the integrin LFA1 to trigger positive feedback activation by Rap1 and talin1

2021 ◽  
Vol 14 (686) ◽  
pp. eabf2184
Author(s):  
Naoyuki Kondo ◽  
Yoshihiro Ueda ◽  
Tatsuo Kinashi

Integrin activation by the intracellular adaptor proteins talin1 and kindlin-3 is essential for lymphocyte adhesion. These adaptors cooperatively control integrin activation through bidirectional (inside-out and outside-in) activation signals. Using single-molecule measurements, we revealed the distinct dynamics of talin1 and kindlin-3 interactions with the integrin LFA1 (αLβ2) and their functions in LFA1 activation and LFA1-mediated adhesion. The kinetics of talin1 binding to the tail of the β2 subunit corresponded to those of LFA1 binding to its ligand ICAM1. ICAM1 binding induced transient interactions between the membrane-proximal cytoplasmic region of the β2 subunit with an N-terminal domain of kindlin-3, leading to disruption of the association between the integrin subunits (the α/β clasp) and unbending of the ectodomains of the α/β heterodimer. These conformational changes promoted high-affinity talin1 binding to the β2 tail that required the talin rod domain and the actomyosin cytoskeleton. Inside-out signaling induced by the GTPase Rap1 did not markedly stabilize the binding of talin1 and kindlin-3 to LFA1. In contrast, ligand-induced outside-in signaling, the stabilization of open LFA1 conformers, or shear force substantially altered the dynamics of talin1 and kindlin-3 association with LFA1 and enhanced both Rap1 and LFA1 activation. In migrating lymphocytes, asymmetrical distribution of talin1 and kindlin-3 correlated with the maturation of LFA1 from a low-affinity conformation at the leading edge to a high-affinity conformation in the adherent mid-body. Our results suggest that kindlin-3 spatiotemporally mediates a positive feedback circuit of LFA1 activation to control dynamic adhesion and migration of lymphocytes.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 198-198
Author(s):  
Jieqing Zhu ◽  
Chuanmei Zhang ◽  
Jiafu Liu ◽  
Xiuli Jiang ◽  
Nada Haydar ◽  
...  

Abstract Platelet specific integrin αIIbβ3 plays an essential role in hemostasis and thrombosis. It has been used as a prototype for understanding integrin activation and conformational regulation. Crystal structures of αIIbβ3 headpiece composed of the αIIb β-propeller and β3 βI, hybrid, and PSI domains in the absence or presence of RGD-mimetic drugs revealed the headpiece changing from a closed to an open conformation upon ligand binding. A striking change is the swing-out motion of the β3 hybrid domain away from the βI and the αIIb thigh domains. This is accompanied by the changing of the α1/α1'-helix from a bent to a merged and straightened α-helical conformation. The α1/α1'-helix is bent at the α1/α1' junction (β3 Ile-131 to Gly-135) as revealed by the crystal structures of β3, β1, β2, and β7 integrins in the closed headpiece conformation. The β3 Gly-135 at the α1/α1' junction is completely conserved among all the β integrins. We propose that the conserved glycine at the α1/α1' junction is critical for maintaining the bent α1/α1'-helix conformation, and the α1/α1'-helix unbending is required for integrin activation and bidirectional signaling. To test this hypothesis, we mutated the β3 Gly-135 to alanine and showed that the β3-G135A mutation rendered αIIbβ3 integrin constitutively binding the activation-dependent mAb PAC-1. In contrast, the β3-G135P mutation had minor effect on integrin activation. This is consistent with the idea that alanine tends to stabilize a straight α-helical structure, while glycine and proline tend to introduce a bend or kink into the α-helical conformation when present at the internal positions of an α-helix. That is, the conserved β3 Gly-135 is essential for restraining the α1/α1'-helix in the bent conformation. The β3 Gly-135 is partially exposed in the bent conformation of α1/α1'-helix and buried deeply into the hydrophobic environment upon the α1/α1'-helix unbending. We rationalized that the hydrophilic substitutions will restrain, while the hydrophobic substitutions will facilitate the burying of β3 Gly-135, and thus block and induce α1/α1'-helix unbending, respectively. As expected, the β3-G135R and G135K mutations completely blocked PAC-1 binding to αIIbβ3 integrin stimulated by Mn2+ or by the αIIb-R995D mutation that mimics integrin inside-out activation. In sharp contrast, the β3-G135L and G135M mutations constitutively induced PAC-1 binding to αIIbβ3 integrin. To further confirm the α1/α1'-helix unbending is required for integrin activation and signaling, we introduced tandem double or triple glycine substitutions into the α1/α1' junction to reinforce the bent conformation of α1/α1'-helix. Remarkably, all the double or triple glycine mutations completely abolished soluble PAC-1 binding stimulated by Mn2+ from outside or by the αIIb-R995D or αIIb-F993A mutation from inside the cell. This data provide compelling evidence that the integrin α1/α1'-helix unbending is indispensible for high affinity ligand binding. Interestingly, the β3-G135R or double glycine mutant still mediated cell adhesion to immobilized PAC-1 or fibrinogen, but at a reduced level. The cell adhesion could be blocked by eptifibatide, indicating the binding ability of the mutant integrins with the high affinity small molecule ligand. However, eptifibatide failed to induce the ectodomain extension of the mutant integrins. In addition, integrin-mediated outside-in signaling, such as cell spreading, focal adhesion and F-actin stress fiber formation, and focal adhesion kinase activation was inhibited by the β3-G135R or double glycine mutations. This data demonstrated that the conformational communication initiated by ligand binding is interrupted due to the defect of α1/α1'-helix unbending. We further showed that overexpression of talin1 head domain failed to induce PAC-1 binding to the αIIbβ3 integrin with double glycine mutations at the α1/α1' junction, but still induced integrin ectodomain extension. That is, in the inside-out integrin activation, the ectodomain extension alone does not result in high affinity ligand binding. The conformational signal has to be relayed to the ligand binding site through α1/α1'-helix unbending. In conclusion, our data established the structural role of the α1/α1' junction that allows relaxation of the α1/α1'-helix in the resting state and transmission of bidirectional conformational signals by helix unbending upon integrin activation. Disclosures: No relevant conflicts of interest to declare.


Oncogene ◽  
2021 ◽  
Author(s):  
Senlin Zhao ◽  
Bingjie Guan ◽  
Yushuai Mi ◽  
Debing Shi ◽  
Ping Wei ◽  
...  

AbstractGlycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1155-1159 ◽  
Author(s):  
Jian-Ping Xiong ◽  
Thilo Stehle ◽  
Simon L. Goodman ◽  
M. Amin Arnaout

Abstract Integrins are cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane and thus influence most cellular functions. Intracellular signals switch integrins into a ligand-competent state as a result of elicited conformational changes in the integrin ectodomain. Binding of extracellular ligands induces, in turn, structural changes that convey distinct signals to the cell interior. The structural basis of this bidirectional signaling has been the focus of intensive study for the past 3 decades. In this perspective, we develop a new hypothesis for integrin activation based on recent crystallographic, electron microscopic, and biochemical studies.


2013 ◽  
Vol 25 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Yiqin Xiong ◽  
Wei Li ◽  
Ching Shang ◽  
Richard M. Chen ◽  
Pei Han ◽  
...  

2016 ◽  
Vol 113 (42) ◽  
pp. 11853-11858 ◽  
Author(s):  
Jennifer Zagelbaum ◽  
Noriko Shimazaki ◽  
Zitadel Anne Esguerra ◽  
Go Watanabe ◽  
Michael R. Lieber ◽  
...  

Single-molecule FRET (smFRET) and single-molecule colocalization (smCL) assays have allowed us to observe the recombination-activating gene (RAG) complex reaction mechanism in real time. Our smFRET data have revealed distinct bending modes at recombination signal sequence (RSS)-conserved regions before nicking and synapsis. We show that high mobility group box 1 (HMGB1) acts as a cofactor in stabilizing conformational changes at the 12RSS heptamer and increasing RAG1/2 binding affinity for 23RSS. Using smCL analysis, we have quantitatively measured RAG1/2 dwell time on 12RSS, 23RSS, and non-RSS DNA, confirming a strict RSS molecular specificity that was enhanced in the presence of a partner RSS in solution. Our studies also provide single-molecule determination of rate constants that were previously only possible by indirect methods, allowing us to conclude that RAG binding, bending, and synapsis precede catalysis. Our real-time analysis offers insight into the requirements for RSS–RSS pairing, architecture of the synaptic complex, and dynamics of the paired RSS substrates. We show that the synaptic complex is extremely stable and that heptamer regions of the 12RSS and 23RSS substrates in the synaptic complex are closely associated in a stable conformational state, whereas nonamer regions are perpendicular. Our data provide an enhanced and comprehensive mechanistic description of the structural dynamics and associated enzyme kinetics of variable, diversity, and joining [V(D)J] recombination.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
David Wensel ◽  
Yongnian Sun ◽  
Zhufang Li ◽  
Sharon Zhang ◽  
Caryn Picarillo ◽  
...  

ABSTRACT A novel fibronectin-based protein (Adnectin) HIV-1 inhibitor was generated using in vitro selection. This inhibitor binds to human CD4 with a high affinity (3.9 nM) and inhibits viral entry at a step after CD4 engagement and preceding membrane fusion. The progenitor sequence of this novel inhibitor was selected from a library of trillions of Adnectin variants using mRNA display and then further optimized for improved antiviral and physical properties. The final optimized inhibitor exhibited full potency against a panel of 124 envelope (gp160) proteins spanning 11 subtypes, indicating broad-spectrum activity. Resistance profiling studies showed that this inhibitor required 30 passages (151 days) in culture to acquire sufficient resistance to result in viral titer breakthrough. Resistance mapped to the loss of multiple potential N-linked glycosylation sites in gp120, suggesting that inhibition is due to steric hindrance of CD4-binding-induced conformational changes.


2014 ◽  
Vol 143 (4) ◽  
pp. 449-464 ◽  
Author(s):  
Natascia Vedovato ◽  
David C. Gadsby

A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Abhishek Mazumder ◽  
Richard H Ebright ◽  
Achillefs Kapanidis

Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RPO). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyze RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, 'bind-unwind-load-and-lock' model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.


Sign in / Sign up

Export Citation Format

Share Document