scholarly journals LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit

Oncogene ◽  
2021 ◽  
Author(s):  
Senlin Zhao ◽  
Bingjie Guan ◽  
Yushuai Mi ◽  
Debing Shi ◽  
Ping Wei ◽  
...  

AbstractGlycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.

2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


2021 ◽  
Author(s):  
Rogelio A. Hernandez-Lopez ◽  
Wei Yu ◽  
Katie Cabral ◽  
Olivia Creasey ◽  
Maria del Pilar Lopez Pazmino ◽  
...  

AbstractOverexpressed tumor associated antigens (e.g. HER2 and EGFR) are attractive targets for therapeutic T cells, but toxic cross-reaction with normal tissues expressing low antigen levels has been observed with Chimeric Antigen Receptor (CAR) T cells targeting such antigens. Inspired by natural ultrasensitive response circuits, we engineer a two-step positive feedback circuit that allows T cells to discriminate targets based on a sigmoidal antigen density threshold. In this circuit, a low affinity SynNotch receptor for HER2 controls the expression of a high affinity CAR for HER2. Increasing HER2 density thus has cooperative effects on T cells ╌ it both increases CAR expression and activation ╌ leading to a sigmoidal response. T Cells with this circuit show sharp discrimination between target cells expressing normal and disease levels of HER2, both in vitro and in vivo.One Sentence SummaryA two-step positive feedback circuit generates engineered T cells capable of killing target cells with an ultrasensitive antigen density threshold.


2020 ◽  
Author(s):  
Jiang Xu ◽  
Zhongzu Zhang ◽  
Lu Huang ◽  
Rongping Zhou ◽  
LinXuan Feng ◽  
...  

Abstract BackgroundCancer stem cells (CSCs) have been documented to be closely related with tumor metastasis and recurrence, and the same important role were identified in Ewing Sarcoma (ES). In our previous study, we found that let-7a was repressed in ES. Herein, we further identified its putative effects in the CSCs of ES. ResultsThe expression of let-7a was consistently suppressed in the separated ES SP cells, which were identified to contain the characteristics of the stem cells. The ability of colony formation or invasion of ES SP cells was suppressed in vitro when we restored the expression of let-7a. The same results were found in the tumor growth of ES SP cells’ xenograft mice in vivo. Furthermore, we found STAT3 and lin28 were involved in the suppressive effects.ConclusionLet-7a, STAT3 and lin28 might form a positive circuit to regulate the malignant phenotype of ES CSCs.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 660-660
Author(s):  
Erdem Altunel ◽  
Jason Somarelli ◽  
So Young Kim ◽  
Wayne Glover ◽  
Gabrielle Rupprecht ◽  
...  

660 Background: Colorectal cancer liver metastasis (CRCLM) continues to be a major health problem and despite extensive efforts to develop new drugs, median survival remains at a mere 30 months. The purpose of our study is 1. Develop a precision medicine strategy for patients with CRCLM and 2. Discover novel pathways and treatments to improve outcomes. Methods: In order to develop a precision medicine strategy, 6 matched patient derived xenografts (PDX) and cell lines were established from patients undergoing resection of their CRCLM. A high-throughput drug screen containing over 100 FDA approved drugs was first used in vitro on 3 cell lines to identify therapeutic targets. The top therapeutic targets were validated in vivo. RNA seq was then performed to identify potential predictive markers of response. Results: Our high-throughput drug screen performed on 3 early passage CRC cell lines (CRC057, CRC119 and CRC240) identified ponatinib, a multi TKI, as the only agent to inhibit all 3 cell lines. Subsequent growth inhibition analysis identified the fibroblast growth factor receptor (FGFR) as the main target of ponatinib. In vitro findings were confirmed in vivo in matched PDXs. Western blot analysis post treatment showed evidence of decreased phospho-FGFRs. Further analysis of the main downstream signaling pathways of FGFR (RAS/PI3K/AKT, RAS/MEK/ERK and STAT) demonstrated that the STAT pathway was effectively targeted in all 3 cell lines. In contrast, the ERK pathway was targeted in CRC240 and CRC057 while the p-AKT was targeted in CRC119. Finally, RNAseq revealed different isoforms and mutations in these samples. Conclusions: We have developed a precision medicine strategy for patients with CRCLM using matched cell lines and PDXs coupled with high throughput drug screens and genomic analysis to identify novel targets and specifically identified the FGFR/STAT axis as a therapeutic target. Furthermore, co-targeting FGFR and its downstream pathways may provide synergy and lead to combinatorial therapies that can improve patient outcomes. Finally, RNAseq data can be used to develop predictive markers of therapy.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ji Yeon Byun ◽  
Young-So Youn ◽  
Ye-Ji Lee ◽  
Youn-Hee Choi ◽  
So-Yeon Woo ◽  
...  

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cellsin vitroandin vivoorchestrate the interaction between COX-2/PGE2and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2production. Both NS-398 and COX-2-siRNA, as well as the PGE2receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2induction. Thein vivorelevance of the interaction between the COX-2/PGE2and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages followingin vivoexposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.


2020 ◽  
Author(s):  
Zhenxian Xiang ◽  
Guoquan Huang ◽  
Haitao Wu ◽  
Qiuming He ◽  
Chaogang Yang ◽  
...  

Abstract Background: Circulating tumor cells are important precursor of colorectal cancer metastasis, which attributes to the main cause of cancer-related death. The ability to adopt epithelial-mesenchymal transition (EMT) process facilitates CTCs generation, thereby overcoming metastatic bottlenecks and realizing distant metastasis. However, the potential molecular mechanism of CRC EMT remains largely unknown.Methods: RT-qPCR, immunohistochemical staining, and western blot were used to detect the expression of mRNA and protein in CRC. Loss- and gain-of-function approaches were performed to investigate the effect of SNHG16 on CRC cell phenotypes. Function assays, including wounding healing, transwell assay, and clone formation were used to assess the effect of SNHG16 on tumor biological behavior. Then, RNA immunoprecipitation, Chromatin Immunoprecipitation, Co-Immunoprecipitation, GST-pull down, biotin-labeled miR-195-5p pull down, and dual-luciferase assay were performed to uncover the underlying mechanism for molecular interaction. Finally, CRC nude mice xenograft model experiment was performed to evaluate the influence of SNHG16 on tumor progression in vivo Results: Compared with normal tissue and cell line, SNHG16 was significantly upregulated in CRC. Clinical investigation revealed that SNHG16 high expression was correlated with advanced TNM stage, distant metastasis, and poor prognosis of cancer patients. According to Loss- and gain-of-function experiment, SNHG16 could promote CRC proliferation, migration, invasion, EMT, mesenchymal-type CTCs (MCTCs) generation, and liver metastasis through YAP1 in vitro and in vivo. Mechanistic research indicates that, SNHG16 could act as miRNA sponge to sequester miR-195-5p on Ago2, thereby protecting YAP1 from repression and facilitating CRC liver metastasis and tumor progression. Moreover, YAP1 could combine with TEA Domain Transcription Factor 1 (TEAD1) to form a YAP1/TEAD1 complex, which could in turn bind to the promoter of SNHG16 and regulate its transcription. In addition, both of YAP1 and TEAD1 are indispensable during this process. Finally, we demonstrated that YAP1 significantly promoted the tumor progression, and SNHG16 could rescue the effect of YAP1 on tumor progressionConclusion: Herein, we clarified a hitherto unexplored positive feedback loop between SNHG16 and YAP1/TEAD1. These findings provided new sights in CRC liver metastasis, and it may act as a potential candidate in the treatment of CRC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Junhui Yu ◽  
Zhengshui Xu ◽  
Jing Guo ◽  
Kui Yang ◽  
Jianbao Zheng ◽  
...  

AbstractThe complex interaction between tumor-associated macrophages (TAMs) and tumor cells through several soluble factors and signaling is essential for colorectal cancer (CRC) progression. However, the molecular mechanism involved remains elusive. In this study, we demonstrated that MMP1 derived from TAMs markedly facilitated colon cancer cell proliferation via accelerating cell cycle transition from G0/G1 to S and G2/M phase. Moreover, exogenous MMP1 activated cdc25a/CDK4-cyclin D1 and p21/cdc2-cyclin B1 complexes through altering c-Myc and ETV4. Mechanistic studies indicated that inhibition of PAR1 or blockage of MAPK/Erk signaling eliminated the proliferation induced by exogenous MMP1 in vitro and in vivo. In addition, ETV4 could bind to the promoter of MMP1 and activate MMP1 transcription, which confirmed the MMP1/ETV4/MMP1 positive feedback. Altogether, our study identified a cytokine paracrine manner between colon cancer cells and TAMs. MMP1/PAR1/Erk1/2/ETV4 positive feedback loop may represent to be a therapeutic target and prognostic marker in CRC.


2021 ◽  
pp. DMD-AR-2021-000359
Author(s):  
Areti-Maria Vasilogianni ◽  
Brahim Achour ◽  
Daniel Scotcher ◽  
Sheila Annie Peters ◽  
Zubida M. Al-Majdoub ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jeong A Bae ◽  
Woo Kyun Bae ◽  
Sung Jin Kim ◽  
Yoo-Seung Ko ◽  
Keon Young Kim ◽  
...  

Abstract Background Distant metastasis is the major cause of death in patients with colorectal cancer (CRC). Previously, we identified KITENIN as a metastasis-enhancing gene and suggested that the oncogenic KITENIN complex is involved in metastatic dissemination of KITENIN-overexpressing CRC cells. Here, we attempted to find substances targeting the KITENIN complex and test their ability to suppress distant metastasis of CRC. Methods We screened a small-molecule compound library to find candidate substances suppressing the KITENIN complex in CRC cells. We selected a candidate compound and examined its effects on the KITENIN complex and distant metastasis through in vitro assays, a molecular docking model, and in vivo tumor models. Results Among several compounds, we identified DKC1125 (Disintegrator of KITENIN Complex #1125) as the best candidate. DKC1125 specifically suppressed KITENIN gain of function. After binding KH-type splicing regulatory protein (KSRP), DKC1125 degraded KITENIN and Dvl2 by recruiting RACK1 and miRNA-124, leading to the disintegration of the functional KITENIN–KSRP–RACK1–Dvl2 complex. A computer docking model suggested that DKC1125 specifically interacted with the binding pocket of the fourth KH-domain of KSRP. KITENIN-overexpressing CRC cells deregulated certain microRNAs and were resistant to 5-fluorouracil, oxaliplatin, and cetuximab. DKC1125 restored sensitivity to these drugs by normalizing expression of the deregulated microRNAs, including miRNA-124. DKC1125 effectively suppressed colorectal liver metastasis in a mouse model. Interestingly, the combination of DKC1125 with 5-fluorouracil suppressed metastasis more effectively than either drug alone. Conclusion DKC1125 targets the KITENIN complex and could therefore be used as a novel therapeutic to suppress liver metastasis in CRC expressing high levels of KITENIN.


Sign in / Sign up

Export Citation Format

Share Document