scholarly journals Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth

2019 ◽  
Vol 11 (482) ◽  
pp. eaau5612 ◽  
Author(s):  
Troy E. Messick ◽  
Garry R. Smith ◽  
Samantha S. Soldan ◽  
Mark E. McDonnell ◽  
Julianna S. Deakyne ◽  
...  

Epstein-Barr virus (EBV) is a DNA tumor virus responsible for 1 to 2% of human cancers including subtypes of Burkitt’s lymphoma, Hodgkin’s lymphoma, gastric carcinoma, and nasopharyngeal carcinoma (NPC). Persistent latent infection drives EBV-associated tumorigenesis. Epstein-Barr nuclear antigen 1 (EBNA1) is the only viral protein consistently expressed in all EBV-associated tumors and is therefore an attractive target for therapeutic intervention. It is a multifunctional DNA binding protein critical for viral replication, genome maintenance, viral gene expression, and host cell survival. Using a fragment-based approach and x-ray crystallography, we identify a 2,3-disubstituted benzoic acid series that selectively inhibits the DNA binding activity of EBNA1. We characterize these inhibitors biochemically and in cell-based assays, including chromatin immunoprecipitation and DNA replication assays. In addition, we demonstrate the potency of EBNA1 inhibitors to suppress tumor growth in several EBV-dependent xenograft models, including patient-derived xenografts for NPC. These inhibitors selectively block EBV gene transcription and alter the cellular transforming growth factor–β (TGF-β) signaling pathway in NPC tumor xenografts. These EBNA1-specific inhibitors show favorable pharmacological properties and have the potential to be further developed for the treatment of EBV-associated malignancies.

2004 ◽  
Vol 32 (5) ◽  
pp. 731-732 ◽  
Author(s):  
M.N. Holowaty ◽  
L. Frappier

USP7 (also called HAUSP) is a de-ubiquitinating enzyme recently identified as a key regulator of the p53–mdm2 pathway, which stabilizes both p53 and mdm2. We have discovered that the Epstein–Barr nuclear antigen 1 protein of Epstein–Barr virus binds with high affinity to USP7 and disrupts the USP7–p53 interaction. The results have important implications for the role of Epstein–Barr nuclear antigen 1 in the cellular immortalization that is typical of an Epstein–Barr virus latent infection.


2008 ◽  
Vol 82 (8) ◽  
pp. 4180-4183 ◽  
Author(s):  
Myung-Soo Kang ◽  
Vishal Soni ◽  
Roderick Bronson ◽  
Elliott Kieff

ABSTRACT To test whether transgenic Epstein-Barr virus nuclear antigen 1 (EBNA1) expression in C57BL/6 mouse lymphocytes causes lymphoma, EBNA1 expressed in three FVB lineages at two or three times the level of latent infection was crossed up to six successive times into C57BL/6J mice. After five or six crosses, 14/36, (38%) EBNA1 transgenic mice, 11/31 (36%) littermate EBNA1-negative controls, and 9/25 (36%) inbred C57BL/6J mice housed in the same facility had lymphoma. These data indicate that EBNA1 does not significantly increase lymphoma prevalence in C57BL/6J mice.


1996 ◽  
Vol 77 (5) ◽  
pp. 991-996 ◽  
Author(s):  
C. Sauder ◽  
N. Gotzinger ◽  
W. H. Schubach ◽  
G. C. Horvath ◽  
E. Kremmer ◽  
...  

1995 ◽  
Vol 270 (35) ◽  
pp. 20556-20559 ◽  
Author(s):  
Jean A. Barwell ◽  
Alexey Bochkarev ◽  
Richard A. Pfuetzner ◽  
Harry Tong ◽  
Daniel S. C. Yang ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3672-3672
Author(s):  
Christopher P Fox ◽  
Claire Shannon-Lowe ◽  
Philip Gothard ◽  
Bhuvan Kishore ◽  
Jeffrey R. Neilson ◽  
...  

Abstract Abstract 3672 Poster Board III-608 Introduction Epstein Barr virus (EBV) is predominantly B lymphotrophic both in-vitro and in vivo, where in immunocompetent individuals the virus persists asymptomatically in the B lymphoid compartment under host T cell control. EBV's association with B cell malignancies, such as Hodgkin and Burkitt lymphoma, can be viewed as rare accidents of the virus' lifelong interaction with the B cell system. By contrast, EBV infection of NK and T cells is considered a rare event but is nonetheless strongly associated with a spectrum of rare lymphoproliferations: EBV-associated haemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), aggressive NK leukaemia and NK/T lymphoma all characterised pathogenically by the presence of monoclonal EBV in the T and/or NK cells. The mechanism of viral entry and its contribution to lymphoproliferation in these cell lineages remains to be clearly defined. The majority of reported cases of EBV-HLH occur in the context of primary EBV infection in children or adolescents, some of whom have a defined inherited immune defect. Adult cases of EBV-HLH occur extremely rarely and appear to be more frequent in individuals of East Asian origin. Furthermore, the vast majority of analysed cases of EBV-HLH have identified CD8+ lymphocytes as the predominant virus-bearing cell. To-date, EBV infection of (CD3-CD56+) circulating NK cells has not been reported and the pattern of viral gene expression remains unclear. Methods/Patients We analysed peripheral blood from three consecutive cases of EBV-HLH, referred to our laboratory between 2007-2009, to identify the predominant virus-harbouring cell. All three cases occurred in adults (mean age 44yrs), with no history of inherited immunodeficiency, who presented with clinical and laboratory features consistent with a diagnosis of HLH; fever, hepatosplenomegaly, pancytopenia, markedly elevated serum ferritin and lactate dehydrogenase and EBV copy number of 105-106 per millilitre of whole blood. Haemophagocytosis was unequivocally present on tissue biopsy from two patients. Mononuclear cells were separated using the MoFlo™ cell sorter into pure populations. Patient 1 and 2: CD19+CD3 −CD56−, CD3+CD19−CD56−, and CD56+CD3−CD19−. Patient 3: CD19+CD3 –CD16−, CD3+CD19−CD16−, CD16+CD3−CD19− and CD3−CD19−CD16−. DNA was subsequently extracted from each population and assayed by quantitative PCR, expressed as genome copies per million cells. Results In all three cases we found the predominant EBV load within the non-B, non-T lymphocyte populations; definitively shown to be the CD56+CD3− cell fraction in 2 cases and for case 3 within CD3−CD19−CD16− lymphocytes likely to represent CD56+CD16- NK cells (a minority population in normal peripheral blood). A representative figure is shown: We then quantitatively examined latent and lytic viral gene transcripts by real-time PCR and, in contrast to previously published data, we found a tightly restricted pattern of EBV gene expression with extremely high levels of EBER (EBV-encoded RNA) transcripts present. Lymphocytes derived from tonsillar tissue and peripheral blood, from both healthy and immunosuppressed individuals, served as control samples and demonstrated the predominant EBV genome load in the CD19+ B-cells but not the T or NK fractions. Conclusion This novel finding of high EBV genome copy numbers and a restricted pattern of viral gene expression, within circulating natural killer cells in the context of adult EBV-HLH, is both pathogenically intriguing and importantly, has relevance for the investigation of targeted therapies for this aggressive disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4055-4063 ◽  
Author(s):  
Jie Yang ◽  
Qian Tao ◽  
Ian W. Flinn ◽  
Paul G. Murray ◽  
Linda E. Post ◽  
...  

Post-transplantation lymphoproliferative disease (PTLD) is associated with Epstein-Barr virus (EBV). Quantitative and qualitative differences in EBV in peripheral blood mononuclear cells (PBMCs) of PTLD patients and healthy controls were characterized. A quantitative competitive polymerase chain reaction (QC-PCR) technique confirmed previous reports that EBV load in PBMCs is increased in patients with PTLD in comparison with healthy seropositive controls (18 539 vs 335 per 106 PBMCs, P = .0002). The average frequency of EBV-infected cells was also increased (271 vs 9 per 106 PBMCs, P = .008). The distribution in numbers of viral genome copies per cell was assessed by means of QC-PCR at dilutions of PBMCs. There was no difference between PTLD patients and healthy controls. Similarly, no differences in the patterns of viral gene expression were detected between patients and controls. Finally, the impact of therapy on viral load was analyzed. Patients with a past history of PTLD who were disease-free (after chemotherapy or withdrawal of immunosuppression) at the time of testing showed viral loads that overlapped with those of healthy seropositive controls. Patients treated with rituximab showed an almost immediate and dramatic decline in viral loads. This decline occurred even in patients whose PTLD progressed during therapy. These results suggest that the increased EBV load in PBMCs of PTLD patients can be accounted for by an increase in the number of infected B cells in the blood. However, in terms of viral copy number per cell and pattern of viral gene expression, these B cells are similar to those found in healthy controls. Disappearance of viral load with rituximab therapy confirms the localization of viral genomes in PBMCs to B cells. However, the lack of relationship between the change in viral load and clinical response highlights the difference between EBV-infected PBMCs and neoplastic cells in PTLD.


2000 ◽  
Vol 74 (11) ◽  
pp. 5151-5160 ◽  
Author(s):  
Bo Zhao ◽  
Clare E. Sample

ABSTRACT The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) protein is a transcriptional regulator of viral and cellular genes that is essential for EBV-mediated immortalization of B lymphocytes in vitro. EBNA-3C can inhibit transcription through an association with the cellular DNA-binding protein Jκ, a function shared by EBNA-3A and EBNA-3B. Here, we report a mechanism by which EBNA-3C can activate transcription from the EBV latent membrane protein 1 (LMP-1) promoter in conjunction with EBNA-2. Jκ DNA-binding sites were not required for this activation, and a mutant EBNA-3C protein unable to bind Jκ activated transcription as efficiently as wild-type EBNA-3C, indicating that EBNA-3C can regulate transcription through a mechanism that is independent of Jκ. Furthermore, activation of the LMP-1 promoter is a unique function of EBNA-3C, not shared by EBNA-3A and EBNA-3B. The DNA element through which EBNA-3C activates the LMP-1 promoter includes a Spi-1/Spi-B binding site, previously characterized as an important EBNA-2 response element. Although this element has considerable homology to mouse immunoglobulin light chain promoter sequences to which the mouse homologue of Spi-1 binds with its dimerization partner IRF4, we demonstrate that the IRF4-like binding sites in the LMP-1 promoter do not play a role in EBNA-3C-mediated activation. Both EBNA-2 and EBNA-3C were required for transcription mediated through a 41-bp region of the LMP-1 promoter encompassing the Spi binding site. However, EBNA-3C had no effect on transcription mediated in conjunction with the EBNA-2 activation domain fused to the GAL4 DNA-binding domain, suggesting that it does not function as an adapter between EBNA-2 and the cellular transcriptional machinery. Like EBNA-2, EBNA-3C bound directly to both Spi-1 and Spi-B in vitro. This interaction was mediated by a region of EBNA-3C encompassing a likely basic leucine zipper (bZIP) domain and the ets domain of Spi-1 or Spi-B, reminiscent of interactions between bZIP and ets domains of other transcription factors that result in their targeting to DNA. There are many examples of regulation of the hematopoietic-specific Spi transcription factors through protein-protein interactions, and a similar regulation by EBNA-3C, in conjunction with EBNA-2, is likely to be an important and unique contribution of EBNA-3C to EBV-mediated immortalization.


2014 ◽  
Vol 112 (2) ◽  
pp. 554-559 ◽  
Author(s):  
Stefanie C. S. Schmidt ◽  
Sizun Jiang ◽  
Hufeng Zhou ◽  
Bradford Willox ◽  
Amy M. Holthaus ◽  
...  

Epstein–Barr Virus (EBV) conversion of B-lymphocytes to Lymphoblastoid Cell Lines (LCLs) requires four EBV nuclear antigen (EBNA) oncoproteins: EBNA2, EBNALP, EBNA3A, and EBNA3C. EBNA2 and EBNALP associate with EBV and cell enhancers, up-regulate the EBNA promoter, MYC, and EBV Latent infection Membrane Proteins (LMPs), which up-regulate BCL2 to protect EBV-infected B-cells from MYC proliferation-induced cell death. LCL proliferation induces p16INK4A and p14ARF-mediated cell senescence. EBNA3A and EBNA3C jointly suppress p16INK4A and p14ARF, enabling continuous cell proliferation. Analyses of the EBNA3A human genome-wide ChIP-seq landscape revealed 37% of 10,000 EBNA3A sites to be at strong enhancers; 28% to be at weak enhancers; 4.4% to be at active promoters; and 6.9% to be at weak and poised promoters. EBNA3A colocalized with BATF-IRF4, ETS-IRF4, RUNX3, and other B-cell Transcription Factors (TFs). EBNA3A sites clustered into seven unique groups, with differing B-cell TFs and epigenetic marks. EBNA3A coincidence with BATF-IRF4 or RUNX3 was associated with stronger EBNA3A ChIP-Seq signals. EBNA3A was at MYC, CDKN2A/B, CCND2, CXCL9/10, and BCL2, together with RUNX3, BATF, IRF4, and SPI1. ChIP-re-ChIP revealed complexes of EBNA3A on DNA with BATF. These data strongly support a model in which EBNA3A is tethered to DNA through a BATF-containing protein complexes to enable continuous cell proliferation.


1999 ◽  
Vol 73 (4) ◽  
pp. 2974-2982 ◽  
Author(s):  
May-Ann Lee ◽  
Margaret E. Diamond ◽  
John L. Yates

ABSTRACT Replication and maintenance of the 170-kb circular chromosome of Epstein-Barr virus (EBV) during latent infection are generally believed to depend upon a single viral gene product, the nuclear protein EBNA-1. EBNA-1 binds to two clusters of sites at oriP, an 1,800-bp sequence on the EBV genome which can support replication and maintenance of artificial plasmids introduced into cell lines that contain EBNA-1. To investigate the importance of EBNA-1 to latent infection by EBV, we introduced a frameshift mutation into the EBNA-1 gene of EBV by recombination along with a flanking selectable marker. EBV genomes carrying the frameshift mutation could be isolated readily after superinfecting EBV-positive cell lines, but not if recombinant virus was used to infect EBV-negative B-cell lines or to immortalize peripheral blood B cells. EBV mutants lacking almost all of internal repeat 3, which encode a repetitive glycine and alanine domain of EBNA-1, were generated in the same way and found to immortalize B cells normally. An EBNA-1-deficient mutant of EBV was isolated and found to be incapable of establishing a latent infection of the cell line BL30 at a detectable frequency, indicating that the mutant was less than 1% as efficient as an isogenic, EBNA-1-positive strain in this assay. The data indicate that EBNA-1 is required for efficient and stable latent infection by EBV under the conditions tested. Evidence from other studies now indicates that autonomous maintenance of the EBV chromosome during latent infection does not depend on the replication initiation function of oriP. It is therefore likely that the viral chromosome maintenance (segregation) function of oriP and EBNA-1 is what is required.


Sign in / Sign up

Export Citation Format

Share Document