TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis

2021 ◽  
Vol 13 (605) ◽  
pp. eabe0407
Author(s):  
Tianhe Sun ◽  
Zhiyu Huang ◽  
Wei-Ching Liang ◽  
Jianping Yin ◽  
Wei Yu Lin ◽  
...  

Transforming growth factor–β (TGFβ) is a key driver of fibrogenesis. Three TGFβ isoforms (TGFβ1, TGFβ2, and TGFβ3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFβ2 and TGFβ3 have not been well characterized. Here, we show that the latent forms of TGFβ2 and TGFβ3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFβ1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFβ2 and TGFβ3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFβ isoform-selective antibodies demonstrated that TGFβ2 and TGFβ3 are independently involved in mouse fibrosis models in vivo, and selective TGFβ2 and TGFβ3 inhibition does not lead to the increased inflammation observed with pan-TGFβ isoform inhibition. A cocrystal structure of a TGFβ2–anti-TGFβ2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFβ2 and/or TGFβ3 while sparing TGFβ1 may alleviate fibrosis without toxicity concerns associated with pan-TGFβ blockade.

2021 ◽  
Vol 22 (9) ◽  
pp. 4562
Author(s):  
Ching-Feng Wu ◽  
Ching-Yang Wu ◽  
Robin Y.-Y. Chiou ◽  
Wei-Cheng Yang ◽  
Chuen-Fu Lin ◽  
...  

Zotarolimus is a semi-synthetic derivative of rapamycin and a novel immunosuppressive agent used to prevent graft rejection. The pharmacological pathway of zotarolimus restricts the kinase activity of the mammalian target of rapamycin (mTOR), which potentially leads to reductions in cell division, cell growth, cell proliferation, and inflammation. These pathways have a critical influence on tumorigenesis. This study aims to examine the anti-tumor effect of zotarolimus or zotarolimus combined with 5-fluorouracil (5-FU) on A549 human lung adenocarcinoma cell line implanted in BALB/c nude mice by estimating tumor growth, apoptosis expression, inflammation, and metastasis. We established A549 xenografts in nude mice, following which we randomly divided the mice into four groups: control, 5-FU (100 mg/kg/week), zotarolimus (2 mg/kg/day), and zotarolimus combined with 5-FU. Compared the results with those for control mice, we found that mice treated with zotarolimus or zotarolimus combined with 5-FU retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; decreased inflammation cytokines levels (e.g., IL-1β, TNF-α, and IL-6); reduced inflammation-related factors such as cyclooxygenase-2 (COX-2) protein and nuclear factor-κB (NF-κB) mRNA; enhanced anti-inflammation-related factors including IL-10 and inhibitor of NF-κB kinase α (IκBα) mRNA; and inhibited metastasis-related factors such as transforming growth factor β (TGF-β), CD44, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF). Notably, mice treated with zotarolimus combined with 5-FU had significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with the groups of mice treated with 5-FU or zotarolimus alone. The in vivo study confirmed that zotarolimus or zotarolimus combined with 5-FU could retard lung adenocarcinoma growth and inhibit tumorigenesis. Zotarolimus and 5-FU were found to have an obvious synergistic tumor-inhibiting effect on lung adenocarcinoma. Therefore, both zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents for treatment of human lung adenocarcinoma.


2018 ◽  
Vol 315 (6) ◽  
pp. L991-L1002 ◽  
Author(s):  
Carole L. Wilson ◽  
Sarah E. Stephenson ◽  
Jean Paul Higuero ◽  
Carol Feghali-Bostwick ◽  
Chi F. Hung ◽  
...  

Pericytes are key regulators of the microvasculature through their close interactions with the endothelium. However, pericytes play additional roles in tissue homeostasis and repair, in part by transitioning into myofibroblasts. Accumulation of myofibroblasts is a hallmark of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). To understand the contribution and role of pericytes in human lung fibrosis, we isolated these cells from non-IPF control and IPF lung tissues based on expression of platelet-derived growth factor receptor-β (PDGFR-β), a common marker of pericytes. When cultured in a specialized growth medium, PDGFR-β+ cells retain the morphology and marker profile typical of pericytes. We found that IPF pericytes migrated more rapidly and invaded a basement membrane matrix more readily than control pericytes. Exposure of cells to transforming growth factor-β, a major fibrosis-inducing cytokine, increased expression of α-smooth muscle actin and extracellular matrix genes in both control and IPF pericytes. Given that pericytes are uniquely positioned in vivo to respond to danger signals of both systemic and tissue origin, we stimulated human lung pericytes with agonists having pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). Both control and IPF lung pericytes increased expression of proinflammatory chemokines in response to specific PAMPs and DAMPs released from necrotic cells. Our results suggest that control and IPF lung pericytes are poised to react to tissue damage, as well as microbial and fibrotic stimuli. However, IPF pericytes are primed for migration and matrix invasion, features that may contribute to the function of these cells in lung fibrosis.


2004 ◽  
Vol 35 (8) ◽  
pp. 1000-1007 ◽  
Author(s):  
Mirva Peltoniemi ◽  
Riitta Kaarteenaho-Wiik ◽  
Marjaana Säily ◽  
Raija Sormunen ◽  
Paavo Pääkkö ◽  
...  

2008 ◽  
Vol 28 (23) ◽  
pp. 7001-7011 ◽  
Author(s):  
Qinglei Li ◽  
Stephanie A. Pangas ◽  
Carolina J. Jorgez ◽  
Jonathan M. Graff ◽  
Michael Weinstein ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) superfamily members are critical in maintaining cell growth and differentiation in the ovary. Although signaling of activins, TGF-βs, growth differentiation factor 9, and nodal converge preferentially to SMAD2 and SMAD3, the in vivo functions and redundancy of these SMADs in the ovary and female reproduction remain largely unidentified. To circumvent the deleterious phenotypic aspects of ubiquitous deletion of Smad2 and Smad3, a conditional knockout strategy was formulated to selectively inactivate Smad2, Smad3, or both Smad2 and Smad3 in ovarian granulosa cells. While granulosa cell ablation of individual Smad2 or Smad3 caused insignificant changes in female fertility, deletion of both Smad2 and Smad3 led to dramatically reduced female fertility and fecundity. These defects were associated with the disruption of multiple ovarian processes, including follicular development, ovulation, and cumulus cell expansion. Furthermore, the impaired expansion of cumulus cells may be partially associated with altered cumulus expansion-related transcripts that are regulated by SMAD2/3 signaling. Our results indicate that SMAD2 and SMAD3 function redundantly in vivo to maintain normal female fertility and further support the involvement of an intraovarian SMAD2/3 pathway in mediating oocyte-produced signals essential for coordinating key events of the ovulatory process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yumeko Satou-Kobayashi ◽  
Jun-Dal Kim ◽  
Akiyoshi Fukamizu ◽  
Makoto Asashima

AbstractActivin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann’s organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.


Author(s):  
Lauren Chan

Introduction Fibrosis is a major contributor to chronic kidney disease (CKD), for which no effective clinical treatment exists. The primary source of fibrosis is the activation of fibroblasts to the myofibroblast state. Fibroblast-myofibroblast transition requires transforming growth factor-β (TGF-β) and its canonical Smad signaling pathway.   Purpose Recent findings suggest that mechanical stimuli affect fibroblast behavior. Nuclear localization of YAP/TAZ, closely associated mechanosensitive transcriptional co-factors, are regulated by substrate stiffness. As YAP/TAZ are Smad nuclear retention factors promoting TGF- β signaling, we hypothesized that YAP/TAZ inhibition could attenuate stiffness-mediated, TGF- β induced pro-fibrotic responses.   Methods Immunostaining and immunoblotting were used to analyze localization and activity of YAP/TAZ and Smad levels, respectively.   Results YAP/TAZ are in an active nuclear location in fibroblasts grown on stiff, fibrotic-like substrates (100kPa). In fibroblasts grown on soft substrates (2kPa), YAP/TAZ are primarily in an inactive cytosolic position. Cells grown on soft surfaces demonstrated strongly attenuated nuclear Smad 2/3 translocation and Smad-3 dependent transcription upon TGF-β stimulation, indicating impaired pro-fibrotic signaling. Verteporfin, a clinically approved drug with YAP inhibitory properties, was used to test the role of YAP/TAZ in reduced TGF-β signaling. Verteporfin reduced TGF-β-induced nuclear Smad2/3 accumulation and Smad3-mediated  transcription in fibroblasts grown on stiff surfaces. In vivo, Verteporfin significantly reduces markers of renal fibrosis.   Conclusions Soft, healthy kidney-like substrates inhibit, while stiff fibrotic-like substrates promote, pro-fibrotic TGF-β Smad signalling. Verteporfin inactivates the YAP/TAZ fibroblast mechanosensor, reduces stiffness-augmented fibroblast responses to TGF-β through blockade of Smad signalling, and may be a novel anti-fibrotic agent for CKD.


Reproduction ◽  
2012 ◽  
Vol 143 (2) ◽  
pp. 195-201 ◽  
Author(s):  
C Joy McIntosh ◽  
Steve Lawrence ◽  
Peter Smith ◽  
Jennifer L Juengel ◽  
Kenneth P McNatty

The transforming growth factor β (TGFB) superfamily proteins bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), are essential for mammalian fertility. Recent in vitro evidence suggests that the proregions of mouse BMP15 and GDF9 interact with their mature proteins after secretion. In this study, we have actively immunized mice against these proregions to test the potential in vivo roles on fertility. Mice were immunized with either N- or C-terminus proregion peptides of BMP15 or GDF9, or a full-length GDF9 proregion protein, each conjugated to keyhole limpet hemocyanin (KLH). For each immunization group, ovaries were collected from ten mice for histology after immunization, while a further 20 mice were allowed to breed and litter sizes were counted. To link the ovulation and fertility data of these two experimental end points, mice were joined during the time period identified by histology as being the ovulatory period resulting in to the corpora lutea (CL) counted. Antibody titers in sera increased throughout the study period, with no cross-reactivity observed between BMP15 and GDF9 sera and antigens. Compared with KLH controls, mice immunized with the N-terminus BMP15 proregion peptide had ovaries with fewer CL (P<0.05) and produced smaller litters (P<0.05). In contrast, mice immunized with the full-length GDF9 proregion not only had more CL (P<0.01) but also had significantly smaller litter sizes (P<0.01). None of the treatments affected the number of antral follicles per ovary. These findings are consistent with the hypothesis that the proregions of BMP15 and GDF9, after secretion by the oocyte, have physiologically important roles in regulating ovulation rate and litter size in mice.


Immunity ◽  
2009 ◽  
Vol 31 (1) ◽  
pp. 145-157 ◽  
Author(s):  
Roberto Tinoco ◽  
Victor Alcalde ◽  
Yating Yang ◽  
Karsten Sauer ◽  
Elina I. Zuniga

2007 ◽  
Vol 19 (7) ◽  
pp. 783 ◽  
Author(s):  
Angshumoy Roy ◽  
Martin M. Matzuk

The germline is unique among tissues in being the only lineage that is transmitted through generations. The gonadal somatic cells that interact with male and female germ cells are equally important for their juxtacrine and paracrine signalling pathways that lead to the formation of functionally mature gametes and healthy progeny. The present review summarises exciting new studies that our group and others have achieved at the frontier of male and female germ cell biology and in studying transforming growth factor-β signalling pathways in oocyte–somatic cell interactions and gonadal growth and differentiation. In the process, we have produced over 70 transgenic and knockout models to study reproduction in vivo. These models have helped us identify novel and unexplored areas of germ cell biology and translate this work into the fertility clinic.


Sign in / Sign up

Export Citation Format

Share Document