Petrography and geochemistry of the Middle– Upper Jurassic Banik section, northernmost Iraq – Implications for palaeoredox, evaporitic and diagenetic conditions

2020 ◽  
Vol 297 (2) ◽  
pp. 125-152
Author(s):  
Nagham Omar ◽  
Tom McCann ◽  
Ali I. Al-Juboury ◽  
Sven Oliver Franz

Lithological, petrographic, and geochemical analysis of the Middle to Upper Jurassic succession (i.e.Sargelu and Naokelekan formations) from northernmost Iraq were undertaken with the aim of providing an updated discussion for their sedimentary and diagenetic histories, as well as examining the evaporation proxies and palaeoredox conditions under which these two formations were deposited. Lithologically, the Sargelu Formation comprises massive dolomites, interbedded with shales, rare cherts and one single limestone bed, whilst the Naokelekan Formation consists of shales overlain by limestones and one single dolomite bed. Petrographic analysis of both formations revealed the presence of rare ostracods, bioclastic fragments as well as calcispheres. Five main microfacies were recognized, including bioclastic wackestone, mudstone, dolorudite, dolarenite and dolo micrite microfacies. The shales comprise clay minerals assemblages (illite/muscovite and kaolinite) with some quartz, alkali feldspar and rare pyrite. The Sargelu Formation was probably deposited in a shallow marine environment. In contrast, the Naokelekan Formation is hypothesized to be deposited in a restricted shallow lagoon environment. Palaeoredox indicators suggest that both formations were accumulated under anoxic conditions, most probably in silled basins where water circulation was restricted. Tectonic activity thus resulted in basin compartmentalization across the region, which also explains the marked differences which are often observed.

1982 ◽  
Vol 119 (6) ◽  
pp. 527-551 ◽  
Author(s):  
M. J. Hambrey

SummaryIn northeastern Spitsbergen and western Nordaustlandet well preserved Late Precambrian diamictites have variously been interpreted as tillites or the product of tectonic activity. By focusing on the sedimentology of the diamictites in two key areas, this paper presents unequivocal evidence that the diamictites are indeed glacigenic, confirming the conclusions of previous field investigations. In particular dropstones in large numbers and striated stones are diagnostic of glacial transport, while other characteristics are strongly suggestive of glacial conditions.Stratigraphic studies indicate two discrete glacial episodes, both belonging to the Varangian epoch. The earlier resulted in a thin tillite sequence deposited in a shallow shelf-tidal-lacustrine environment. It is closely associated with stromatolitic dolostones. The later episode resulted in a tillite sequence a few hundred metres thick with two units in northeastern Spitsbergen separated and bounded by dolostone units. Deposition occurred in a shallow marine environment but occasional uplift led to terrestrial conditions and the deposition of fluvioglacial sediments and the development of periglacial phenomena.


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Nagham Omar ◽  
Tom McCann ◽  
Ali I. Al-Juboury ◽  
Isabel Suárez-Ruiz

AbstractPetrographic, organic, and inorganic geochemical analysis of the solid bitumen and host shales from the Middle and Late Jurassic-age Sargelu and Naokelekan Formations of the Banik section, northernmost Iraq, was undertaken. The aim was to understand their derivation and preservation, as well as examine the carbon and oxygen isotopes, and paleoredox proxies under which the solid bitumen and host sediments were deposited. Petrographic analysis of both formations revealed the presence of solid bitumen high reflectance (first phase) and solid bitumen low reflectance (second phase). The equivalent vitrinite reflectance indicates that the solid bitumen of the two formations probably accumulated within the shale reservoirs following oil migration from source rocks located within the same formations. Mineralogical study (XRD and SEM - EDX) revealed that the shales hosting the solid bitumen also contain clay minerals (illite, rectorite, chlorite, montmorillonite, and kaolinite) as well as carbonate minerals, quartz, alkali feldspar, and pyrite. Carbon and oxygen isotope data along with paleoredox indicators suggest that both the solid bitumen sources and host shales in both formations formed within a shallow-marine setting, most probably under anoxic conditions where water circulation was restricted.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Marcin Krajewski ◽  
Piotr Olchowy

This paper describes and analyzes the Upper Jurassic (Lower Kimmeridgian) succession exposed in the Zakrzówek Horst, located in the Kraków area. Three distinguished facies types FT 1-FT 3 comprise several limestone varieties: sponge-microbial, pelitic-bioclastic, and partly dolomitized detrital-bioclastic. Their sedimentary environments varied from relatively deeper, attaining storm-wave base, to more shallower, probably close to normal-wave base. Characteristic features of limestones are changes in contents of CaCO3 and insoluble residuum as well as porosity values in vertical transitional zones between facies types. The investigated facies types differ in sediment porosity dependent on development of limestones and its susceptibility to mechanical compaction during the early diagenesis. The studied limestones show high CaCO3 contents and minor insoluble residuum contents comprising quartz, chalcedony and clay minerals. No distinct variability occurs in contents of magnesium, silica, alumina and iron accumulated in clay minerals, iron oxides and oxyhydroxides, as well as in the amounts of amorphous silica. Early diagenetic dolomites, which occur locally within the limestones, were unrelated to fracture systems as possible pathways responsible for transfer of solutions rich in Mg2+ ions. The possible source of Mg2+ ions might have been the pore solutions, which migrated from compacted basinal bedded facies towards reef facies or the grain-supported bedded facies developed in the adjacent areas. Microscopic studies revealed dedolomitization at the surfaces and in the inner parts of dolomite crystals. In many cases, dolomite crystals were replaced by calcite forming pseudomorphs.


GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 137-174
Author(s):  
Haytham El Atfy ◽  
Rainer Brocke ◽  
Dieter Uhl

ABSTRACT Palynological results of a detailed study carried out on 56 samples retrieved from two selected wells (GH 404-2A and SA-E6A) of the Hilal and Shoab Ali fields within the southern part of the Gulf of Suez, Egypt, are presented. This study is mainly focused on the poorly dated Nukhul Formation, for which very little information from palynology is available despite its importance from a petroleum viewpoint. The assemblages discovered in our study are moderately preserved and reveal a sparse but significant record of spores and pollen and dinoflagellates together with highly diverse fungi and algal taxa, e.g. Botryococcus and Pediastrum. A latest Oligocene–Early Miocene (Chattian–Aquitanian) age has been suggested for the Nukhul Formation, based on compiling palynostratigraphic and ecologic data obtained from palynomorphs that have previously been assumed to be representatives for this period on a regional scale. In addition, the Oligocene/Miocene Boundary (OMB) could be lithostratigraphically defined within the studied formation, most likely at the boundary between the lower Shoab Ali Member and upper Ghara Member. A fungal/algal ‘event’ within the interval from 11,370–11,430 ft in the GH 404-2A Well may be associated with a strong regressive phase. Such a regression was previously observed in the Nile Delta and other locations around the Red Sea province, and may be assigned to the global Mi-1 glaciation event at the OMB. However, not only glacial-driven eustacy but also tectonic activity related to the Gulf of Suez rifting may have contributed in forming such an event. Palynofacies investigations were carried out under both transmitted and fluorescence microscopy and the results were partly supplemented by existing organic geochemical analyses (GH 404-2A Well) involving Rock-Eval pyrolysis and total organic carbon (TOC) measurements. The analysis was used to interpret the depositional regime, paleoenvironment and thermal maturation history of the studied succession. These results support the temporary existence of shallow, pond- or lake-like aquatic habitats during deposition of the lower Shoab Ali Member that evolved into a shallow-marine environment with the onset of the deposition of upper Ghara Member of the Nukhul Formation.


2021 ◽  
Author(s):  
Irfan Sh. Asaad ◽  

Lithostratigraphy and microfacies analysis of the Avanah Formation (Middle Eocene) were studied in the Gomaspan section in the Bina Bawi anticline, northeast of Erbil city, Kurdistan Region, Iraq. The field observations refer that the formation attains 56 m of medium to thick bedded yellow limestone, grey dolomitic limestone and blue marly dolomitic limestone interbedded with thin beds of blue marl and dark grey shale with an interval of sandy limestone in the middle part and thin to medium bedded limestone interbedded with red mudstone. The petrographic study of 29 thin sections of Avanah carbonates revealed that the majority of the matrix is carbonate mud (micrite) with few microspar. The skeletal grains include benthic foraminifera, dasycladacean green algae, ostracods, calcispheres, pelecypods, rare planktonic foraminifera and bryozoa in addition to bioclasts. Non-skeletal grains encompass peloids, oncoids, intraclasts and extraclasts with common monocrystalline quartz. Based on the field observation and petrographic analysis, three different lithostratigraphic units were identified. They are in ascending order: A-Thick bedded dolomitic marly limestone interbedded with shale. B- Bedded dolomitic limestone interbedded with shale and marl. C- Thin to medium bedded limestone interbedded with red mudstone. Depending on detailed microfacies analysis of carbonate rocks, three main microfacies and 12 submicrofacies are recognized. From the sum of all petrographic, facies, textural analyses, it is concluded that Avanah Formation in Gomaspan section, was deposited in shallow marine environment, semi restricted lagoon, in lower and upper parts and open lagoon environment in the middle part interval.


GeoArabia ◽  
2004 ◽  
Vol 9 (3) ◽  
pp. 79-114 ◽  
Author(s):  
Geraint Wyn ap Gwilym Hughes

ABSTRACT Recent work has improved understanding of the benthic foraminiferal stratigraphic and palaeoenvironmental ranges of the Middle to Upper Jurassic reservoir-containing carbonates of Saudi Arabia. The entire Jurassic succession includes the Marrat, Dhruma, Tuwaiq Mountain, Hanifa, Jubaila and Arab formations that terminate with a succession of evaporites, the final, thickest unit of which is termed the Hith Formation. This study focuses on selected carbonate members studied from the Dhruma Formation and above, and includes the Lower Fadhili, Upper Fadhili, Hanifa and Arab-D reservoirs. The Hadriya and Manifa reservoirs are not considered. An ascending order of tiered deep-to shallow-marine foraminiferal assemblages has been determined for each formation and applied to distinguish both long- and short-term palaeobathymetric variations. The Lenticulina-Nodosaria-spicule dominated assemblage characterises the deepest mud-dominated successions in all formations. The consistent presence of Kurnubia and Nautiloculina species suggests only moderately deep conditions, considered to be below fair-weather wave base and shelfal. A foraminiferally-depleted succession then follows that is characterised by encrusting and domed sclerosponges, including Burgundia species, in the Tuwaiq Mountain, Hanifa and Jubaila formations. This assemblage is followed, in the Hanifa and upper Jubaila formations, by a biofacies dominated by fragments of the branched sclerosponge Cladocoropsis mirabilis, together with Kurnubia and Nautiloculina species and a variety of indeterminate simple miliolids. Pseudocyclammina lituus, Alveosepta powersi/jacardi and Redmondoides lugeoni are present within this assemblage. A slightly shallower, possibly lagoon-influenced assemblage is developed in the Hanifa and Arab formations that include Cladocoropsis mirabilis, Kurnubia and Nautiloculina species and the dasyclad algae Clypeina sulcata and Heteroporella jaffrezoi. A further shallower assemblage, found only in the upper Arab-D Member, is characterised by the presence of Mangashtia viennoti, Clypeina sulcata and Cladocoropsis mirabilis. This assemblage is gradually supplemented by “Pfenderina salernitana” and is interpreted as slightly shallower conditions in the upper Arab-D. A very shallow assemblage in the uppermost Arab-D is characterised by the presence of Trocholina alpina, which is then followed by an intertidal assemblage of cerithid gastropods and felted calcareous algae in which foraminifera are typically absent. These various microbiofacies have provided depositional and potential reservoir stratification. A phenomenon termed “palaeobathymetric compression” has been observed in which depositional cycles are enhanced by rapidly shallowing upwards tiered biofacies that encompass less than 3m of sediment thickness but represent in excess of 20m of water depth reduction. This is attributed to short-term rapid lowering of sea level, and may be considered as the microfaunal signals of high frequency forced regressions.


2013 ◽  
Vol 15 ◽  
pp. 63-68
Author(s):  
Sujan Devkota ◽  
Lalu Prasad Paudel

The Bhainskati Formation of the Tansen Group in the Palpa area is known for hematite iron ore deposit for long time. A prominent band of hematite of about 1-2 m thickness and extending >5 km was identified in the upper part of the Bhainskati Formation in the present study. The band is repeated three times in the area by folding and faulting. Petrographic study shows that it is oolitic ironstone of sedimentary origin. Main minerals in the band are hematite, goethite, quartz, calcite, siderite and albite. Hematite content varies considerably among samples and occurs mainly as oolite and cement. The Bhainskati ironstone with its ferrous mineral assemblage and well-rounded texture of the ooids suggests shallow marine environment (prodeltaic to estuarine) with reduced clastic input. DOI: http://dx.doi.org/10.3126/bdg.v15i0.7418 Bulletin of the Department of Geology, Vol. 15, 2012, pp. 63-68


Sign in / Sign up

Export Citation Format

Share Document