Volcanism in the Canadian High Arctic related to the opening of the Arctic Ocean

2004 ◽  
Vol 154 (4) ◽  
pp. 579-603 ◽  
Author(s):  
Solveig Estrada ◽  
Friedhelm Henjes-Kunst
2006 ◽  
Vol 37 (4-5) ◽  
pp. 413-432 ◽  
Author(s):  
Bent Hasholt ◽  
Nelly Bobrovitskaya ◽  
Jim Bogen ◽  
James McNamara ◽  
Sebastian H. Mernild ◽  
...  

This paper reviews and synthesises available information on sediment transport to the Arctic Ocean and adjoining seas with open contact to the Atlantic and Pacific Oceans. Special emphasis is placed on calculation and estimation of the sediment flux from the mostly ungauged high Arctic areas on the American continent, in Greenland, and on islands in the Arctic Ocean, and from Russia. In the absence of reliable information on bedload fluxes for most rivers, attention is directed primarily to suspended sediment loads. By combining available monitoring data and estimates for ungauged areas, the total sediment transport to the Arctic Ocean is estimated to be 324–884 × 106 t yr−1. Of this total, a maximum of about 56% can be considered as monitored, while the rest is based on different types of estimate. It is clearly demonstrated that the monitoring network in the high Arctic is inadequate and that there is a lack of knowledge concerning the proportion of the load that actually reaches the sea, as well as bedload.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Myriam Labbé ◽  
Catherine Girard ◽  
Warwick F. Vincent ◽  
Alexander I. Culley

ABSTRACT High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic. IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.


2021 ◽  
Author(s):  
Yohanna Klanten ◽  
Katherine Triglav ◽  
Catherine Marois ◽  
Dermot Antoniades

The northern coast of Ellesmere Island in the Canadian High Arctic is undergoing amplified warming that parallels the rapid decline in Arctic Ocean sea ice extent, and many lakes in this region have already shown changes in response to warming. However, biogeochemical data from High Arctic freshwaters are limited, and mostly restricted to the short, ice-free period. We sampled four coastal lakes in Stuckberry Valley (82° 54’ N, 66° 56’ W) before the onset of spring melting in 2017, 2018 and 2019, to assess biogeochemical gradients in their water columns and characteristics of their surface sediments. Despite their proximity, there were large differences in limnological properties. The two shallower lakes closer to the ocean were oxygen deficient while the two deeper, more distant lakes were more oxygenated. There were pronounced vertical gradients in major ions, metals and nutrients that suggested large differences in the extent of anaerobic microbial processes among the lakes. Morphometry and dissolved oxygen were the overriding determinants of biogeochemical differences rather than position along this short ocean-inland gradient. The diversity of limnological conditions, and the sensitivity of these characteristics to changes in ice cover, underlines the need for further study of under-ice processes in extreme northern lakes.


Zootaxa ◽  
2020 ◽  
Vol 4759 (3) ◽  
pp. 446-450
Author(s):  
EKATERINA N. KROL ◽  
IVAN O. NEKHAEV

Ganesa bujnitzkii Gorbunov, 1946 was described from the bathyal of the Arctic Ocean north to the Laptev Sea based on only two specimens, which were the only representatives of this species mentioned by Gorbunov (1946b). Galkin (1955) noted that the shell sculpture of Ganesa bujnitzkii is similar to that of Cyclostrema valvatiodes (Jeffreys, 1883), and that the radula of the G. bujnitzkii differs from other species of the genus Ganesa Jeffreys, 1883 and members of the family Trochidae. Later, based on the original description, Warén (1993) proposed that the species may belong to the genus Skenea; however, he did not examine the type specimen. This opinion was reiterated by Kantor & Sysoev (2006). 


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Jan Backman ◽  
Kathryn Moran

AbstractThe Arctic Coring Expedition (ACEX) proved to be one of the most transformational missions in almost 40 year of scientific ocean drilling. ACEX recovered the first Cenozoic sedimentary sequence from the Arctic Ocean and extended earlier piston core records from ≈1.5 Ma back to ≈56 Ma. The results have had a major impact in paleoceanography even though the recovered sediments represents only 29% of Cenozoic time. The missing time intervals were primarily the result of two unexpected hiatuses. This important Cenozoic paleoceanographic record was reconstructed from a total of 339 m sediments. The wide range of analyses conducted on the recovered material, along with studies that integrated regional tectonics and geophysical data, produced surprising results including high Arctic Ocean surface water temperatures and a hydrologically active climate during the Paleocene Eocene Thermal Maximum (PETM), the occurrence of a fresher water Arctic in the Eocene, ice-rafted debris as old as middle Eocene, a middle Eocene environment rife with organic carbon, and ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait near the early-middle Miocene boundary. Taken together, these results have transformed our view of the Cenozoic Arctic Ocean and its role in the Earth climate system.


Sign in / Sign up

Export Citation Format

Share Document