Single Antimicrobial Resistance Mechanisms

JMS SKIMS ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 48-49
Author(s):  
Javaid Ahmad Bhat ◽  
Shariq Rashid Masoodi

Apropos to the article by Dr Bali, titled “Mupirocin resistance in clinical isolates of methicillin-sensitive and resistant Staphylococcus aureus in a tertiary care centre of North India” (1), the authors have raised important issue of emerging antimicrobial resistance (AMR). Antimicrobial resistance is an increasingly serious threat to global public health that requires action across all government sectors and society. As per WHO, AMR lurks the effective prevention and management of an ever-increasing spectrum of infections caused by bacteria, parasites, fungi and viruses. Novel resistance mechanisms are emerging and spreading globally, threatening the man’s ability to treat common infectious diseases.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 671
Author(s):  
Federica Giacometti ◽  
Hesamaddin Shirzad-Aski ◽  
Susana Ferreira

Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal–human–environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Sada Raza ◽  
Kinga Matuła ◽  
Sylwia Karoń ◽  
Jan Paczesny

Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.


Author(s):  
Nireshni Mitchev ◽  
Ravesh Singh ◽  
Mushal Allam ◽  
Stanford Kwenda ◽  
Arshad Ismail ◽  
...  

Objective: Antimicrobial resistance (AMR) is a major challenge to managing infectious diseases. Africa has the highest incidence of gonorrhoea but there is a lack of comprehensive data from sparse surveillance programs. This study investigated the molecular epidemiology and AMR profiles of Neisseria gonorrhoeae isolates in KwaZulu-Natal province (KZN), South Africa. Methods: Repository isolates, from patients attending public healthcare clinics for STI care, were used for phenotypic and genotypic analysis. Etest® was performed to determine antimicrobial susceptibility. Whole-genome sequencing (WGS) was used to determine epidemiology and to predict susceptibility by detecting resistance-associated genes and mutations. Results: Among the 61 isolates, multiple sequence types were identified. Six isolates were novel as determined by multilocus sequence typing. N.gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) determined 48 sequence types, of which 35 isolates had novel antimicrobial profiles. Two novel penA alleles and eight novel mtrR alleles were identified. Point mutations were detected in gyrA , parC , mtrR , penA , ponA and porB1 . This study revealed a high prevalence of AMR (penicillin 67%, tetracycline 89% and ciprofloxacin 52%). However, spectinomycin, cefixime, ceftriaxone and azithromycin remained 100% effective. Conclusion: This study is one of the first to comprehensively describe the epidemiology and AMR of N. gonorrhoeae in KZN, South Africa and Africa, using WGS. KZN has a wide strain diversity and most of these sequence types have been detected in multiple countries, however more than half of our isolates have novel antimicrobial profiles. Continued surveillance is crucial to monitor the emergence of resistance to cefixime, ceftriaxone and azithromycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sirijan Santajit ◽  
Nitaya Indrawattana

The ESKAPE pathogens (Enterococcus faecium,Staphylococcus aureus,Klebsiella pneumoniae,Acinetobacter baumannii,Pseudomonas aeruginosa, andEnterobacterspecies) are the leading cause of nosocomial infections throughout the world. Most of them are multidrug resistant isolates, which is one of the greatest challenges in clinical practice. Multidrug resistance is amongst the top three threats to global public health and is usually caused by excessive drug usage or prescription, inappropriate use of antimicrobials, and substandard pharmaceuticals. Understanding the resistance mechanisms of these bacteria is crucial for the development of novel antimicrobial agents or other alternative tools to combat these public health challenges. Greater mechanistic understanding would also aid in the prediction of underlying or even unknown mechanisms of resistance, which could be applied to other emerging multidrug resistant pathogens. In this review, we summarize the known antimicrobial resistance mechanisms of ESKAPE pathogens.


Author(s):  
Asinamai Athliamai Bitrus ◽  
Olabode Mayowa Peter ◽  
Muhammad Adamu Abbas ◽  
Mohammed Dauda Goni

Author(s):  
Natalia Kolesnik-Goldmann ◽  
Elias Bodendoerfer ◽  
Kim Röthlin ◽  
Sebastian Herren ◽  
Frank Imkamp ◽  
...  

Antibiotic resistance poses a major threat to health and incurs high economic costs worldwide. Rapid detection of resistance mechanisms can contribute to improving patient care and preventing the dissemination of antimicrobial resistance.


2021 ◽  
Vol 12 (1) ◽  
pp. 349-356
Author(s):  
Satish Kumar Sharma ◽  
Shmmon Ahmad

Bacterial biofilm has been a major contributor to severe bacterial infections in humans. Oral infections have also been associated with biofilm-forming microbes. Several antimicrobial strategies have been developed to combat bacterial biofilms. However, the complexity of the oral cavity has made it difficult to use common drug treatments. Most effective ways to control normal bacterial infections are rendered ineffective for bacterial biofilms. Due to limited drug concentration availability, drug neutralization or altered phenotype of bacterial cells, different drug have been ineffective to identify the target cells. This leads to the development of the multifaceted phenomenon of antimicrobial resistance (AMR). Biofilm research done so far has been focused on using antimicrobial drugs to target molecular mechanisms of cells. The severity and resistance mechanisms of extracellular matrix (ECM) have been underestimated. The present study describes different antimicrobial strategies with respect to their applications in dental or oral infections. A prospective strategy has been proposed targeting ECM which is expected to provide an insight on biofilm obstinacy and antimicrobial resistance.


Sign in / Sign up

Export Citation Format

Share Document