Mycobacterium tuberculosis in the Face of Host-Imposed Nutrient Limitation

Author(s):  
Michael Berney ◽  
Linda Berney-Meyer
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew J. Crawford ◽  
Sepehr Ramezani ◽  
Roghaie Jabbari ◽  
Pawan Pathak ◽  
Hyoung J. Cho ◽  
...  

AbstractWith the spread of COVID-19, significant emphasis has been placed on mitigation techniques such as mask wearing to slow infectious disease transmission. Widespread use of face coverings has revealed challenges such as mask contamination and waste, presenting an opportunity to improve the current technologies. In response, we have developed the Auto-sanitizing Retractable Mask Optimized for Reusability (ARMOR). ARMOR is a novel, reusable face covering that can be quickly disinfected using an array of ultraviolet C lamps contained within a wearable case. A nanomembrane UVC sensor was used to quantify the intensity of germicidal radiation at 18 different locations on the face covering and determine the necessary exposure time to inactivate SARS-CoV-2 in addition to other viruses and bacteria. After experimentation, it was found that ARMOR successfully provided germicidal radiation to all areas of the mask and will inactivate SARS-CoV-2 in approximately 180 s, H1N1 Influenza in 130 s, and Mycobacterium tuberculosis in 113 s, proving that this design is effective at eliminating a variety of pathogens and can serve as an alternative to traditional waste-producing disposable face masks. The accessibility, ease of use, and speed of sanitization supports the wide application of ARMOR in both clinical and public settings.


2021 ◽  
Author(s):  
Matthew J. Crawford ◽  
Sepehr Ramezani ◽  
Roghaie Jabbari ◽  
Pawan Pathak ◽  
Hyong Jin Cho ◽  
...  

Abstract With the spread of COVID-19, significant emphasis has been placed on mitigation techniques such as mask wearing to slow infectious disease transmission. Widespread use of face coverings has revealed challenges such as mask contamination and waste, presenting an opportunity to improve the current technologies. In response, we have developed the Auto-sanitizing Retractable Mask Optimized for Reusability (ARMOR). ARMOR is a novel, reusable face covering that can be quickly disinfected using an array of ultraviolet C lamps contained within a wearable case. A nanomembrane UVC sensor was used to quantify the intensity of germicidal radiation at 18 different locations on the face covering and determine the necessary exposure time to inactivate SARS-CoV-2 in addition to other viruses and bacteria. After experimentation, it was found that ARMOR successfully provided germicidal radiation to all areas of the mask and will inactivate SARS-CoV-2 in approximately 180 seconds, H1N1 Influenza in 130 seconds, and Mycobacterium tuberculosis in 113 seconds, proving that this design is effective at eliminating a variety of pathogens and can serve as an alternative to traditional waste-producing disposable face masks. The accessibility, ease of use, and speed of sanitization supports the wide application of ARMOR in both clinical and public settings.


2005 ◽  
Vol 73 (5) ◽  
pp. 2595-2601 ◽  
Author(s):  
Ernestas Janulionis ◽  
Carolina Sofer ◽  
Stephan K. Schwander ◽  
Denarra Nevels ◽  
Barry Kreiswirth ◽  
...  

ABSTRACT The initial host response to Mycobacterium tuberculosis is driven by innate immunity. For this study, we examined the ability of 18 recent clinical isolates and 5 reference strains to survive and replicate in the context of host innate immunity by using whole blood culture. Six healthy tuberculin-negative volunteers served as subjects. H37Ra showed the least capacity to replicate of any of the strains tested, decreasing in viability 1.3 log CFU during 72 h of whole blood culture, whereas H37Rv increased 0.32 log. Clinical isolates varied greatly in their ability to replicate in blood cells, ranging from −0.4 to +0.8 log (P < 0.001). Four showed significantly more growth than H37Rv, and one showed significantly reduced growth. Host mechanisms for restricting intracellular mycobacterial growth were more effective during the first 24 h of whole blood culture than during the 24- to 72-h period. Certain mycobacterial isolates appeared preferentially able to withstand host defenses during each of these intervals. Although there was relatively more homogeneity among subjects than among strains, one of the six subjects showed a reduced capacity to restrict intracellular mycobacterial growth due to a defect expressed during the first 24 h of culture. Our findings indicate substantial variability in the capacity of clinical tuberculosis isolates to replicate in host cells in the face of innate host immunity.


2009 ◽  
Vol 192 (6) ◽  
pp. 1662-1670 ◽  
Author(s):  
Rachel L. Leistikow ◽  
Russell A. Morton ◽  
Iona L. Bartek ◽  
Isaac Frimpong ◽  
Karleen Wagner ◽  
...  

ABSTRACT Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability.


2010 ◽  
Vol 192 (5) ◽  
pp. 1279-1291 ◽  
Author(s):  
Ramandeep Singh ◽  
Clifton E. Barry ◽  
Helena I. M. Boshoff

ABSTRACT In Escherichia coli, expression of the RelE and HipA toxins in the absence of their cognate antitoxins has been associated with generating multidrug-tolerant “persisters.” Here we show that unlike persisters of E. coli, persisters of Mycobacterium tuberculosis selected with one drug do not acquire cross-resistance to other classes of drugs. M. tuberculosis has three homologs of RelE arranged in operons with their apparent antitoxins. Each toxin individually arrests growth of both M. tuberculosis and E. coli, an effect that is neutralized by coexpression of the cognate antitoxin. Overexpression or deletion of each of the RelE toxins had a toxin- and drug-specific effect on the proportion of bacilli surviving antibiotic killing. All three toxins were upregulated in vivo, but none of the deletions affected survival during murine infection. RelE2 overexpression increased bacterial survival rates in the presence of rifampin in vitro, while deletion significantly decreased survival rates. Strikingly, deletion of this toxin had no discernible effect on the level of persisters seen in rifampin-treated mice. Our results suggest that, in vivo, RelE-generated persisters are unlikely to play a significant role in the generation of bacilli that survive in the face of multidrug therapy or in the generation of multidrug-resistant M. tuberculosis.


2018 ◽  
Author(s):  
Yan Wang ◽  
Lisa A. Donovan ◽  
Andries A. Temme

AbstractIn the face of resource limitations, plants show plasticity in multiple trait categories, including biomass allocation, morphology and anatomy, yet inevitably also grow less. The extent to which passive mass-scaling plays a role in trait responses that contribute to increased potential for resource acquisition are poorly understood. Here we assessed the role of mass-scaling on the direction, magnitude and coordination of trait plasticity to light and/or nutrient limitation in cultivated sunflower (Helianthus annuus).We grew seedlings of ten sunflower genotypes for three weeks in a factorial of light (50% shade) and nutrient (10% supply) limitation in the greenhouse and measured a suite of allocational, morphological and anatomical traits for leaves, stems, fine roots, and tap roots.Under resource limitation, plants were smaller and more biomass was allocated to the organ capturing the most limiting resource, as expected. Traits varied in the magnitude of plasticity and the extent to which the observed response was passive (scaled with plant mass) and/or had an additional active component. None of the allocational responses were primarily passive. Plastic changes to specific leaf area and specific root length were primarily active, and adjusted towards more acquisitive trait values under light and nutrient limitation, respectively. For many traits, the observed response was a mixture of active and passive components, and for some traits the active adjustment was antagonistic to the direction of passive adjustment, e.g. stem height, and tap root and stem theoretical hydraulic conductance. Passive scaling with size played a major role in the coordinated response to light, but correcting for mass clarified that the active responses to both limitations were more similar in magnitude, although still resource and organ specific.Our results demonstrate that both passive plasticity and active plasticity can contribute to increased uptake capacity for limiting resources in a manner that is resource, organ and trait specific. Indeed, passive adjustments (scaling with mass) of traits due to resource stress extends well beyond just mass allocation traits. For a full understanding of plants response to environmental stress both passive and active plasticity needs to be taken into account.


2018 ◽  
Vol 41 ◽  
Author(s):  
Samuel G. B. Johnson

AbstractZero-sum thinking and aversion to trade pervade our society, yet fly in the face of everyday experience and the consensus of economists. Boyer & Petersen's (B&P's) evolutionary model invokes coalitional psychology to explain these puzzling intuitions. I raise several empirical challenges to this explanation, proposing two alternative mechanisms – intuitive mercantilism (assigning value to money rather than goods) and errors in perspective-taking.


1997 ◽  
Vol 161 ◽  
pp. 203-218 ◽  
Author(s):  
Tobias C. Owen

AbstractThe clear evidence of water erosion on the surface of Mars suggests an early climate much more clement than the present one. Using a model for the origin of inner planet atmospheres by icy planetesimal impact, it is possible to reconstruct the original volatile inventory on Mars, starting from the thin atmosphere we observe today. Evidence for cometary impact can be found in the present abundances and isotope ratios of gases in the atmosphere and in SNC meteorites. If we invoke impact erosion to account for the present excess of129Xe, we predict an early inventory equivalent to at least 7.5 bars of CO2. This reservoir of volatiles is adequate to produce a substantial greenhouse effect, provided there is some small addition of SO2(volcanoes) or reduced gases (cometary impact). Thus it seems likely that conditions on early Mars were suitable for the origin of life – biogenic elements and liquid water were present at favorable conditions of pressure and temperature. Whether life began on Mars remains an open question, receiving hints of a positive answer from recent work on one of the Martian meteorites. The implications for habitable zones around other stars include the need to have rocky planets with sufficient mass to preserve atmospheres in the face of intensive early bombardment.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Sign in / Sign up

Export Citation Format

Share Document