scholarly journals ampG Gene of Pseudomonas aeruginosa and Its Role in β-Lactamase Expression

2010 ◽  
Vol 54 (11) ◽  
pp. 4772-4779 ◽  
Author(s):  
Ying Zhang ◽  
Qiyu Bao ◽  
Luc A. Gagnon ◽  
Ann Huletsky ◽  
Antonio Oliver ◽  
...  

ABSTRACT In enterobacteria, the ampG gene encodes a transmembrane protein (permease) that transports 1,6-GlcNAc-anhydro-MurNAc and the 1,6-GlcNAc-anhydro-MurNAc peptide from the periplasm to the cytoplasm, which serve as signal molecules for the induction of ampC β-lactamase. The role of AmpG as a transporter is also essential for cell wall recycling. Pseudomonas aeruginosa carries two AmpG homologues, AmpG (PA4393) and AmpGh1 (PA4218), with 45 and 41% amino acid sequence identity, respectively, to Escherichia coli AmpG, while the two homologues share only 19% amino acid identity. In P. aeruginosa strains PAO1 and PAK, inactivation of ampG drastically repressed the intrinsic β-lactam resistance while ampGh1 deletion had little effect on the resistance. Further, deletion of ampG in an ampD-null mutant abolished the high-level β-lactam resistance that is associated with the loss of AmpD activity. The cloned ampG gene is able to complement both the P. aeruginosa and the E. coli ampG mutants, while that of ampGh1 failed to do so, suggesting that PA4393 encodes the only functional AmpG protein in P. aeruginosa. We also demonstrate that the function of AmpG in laboratory strains of P. aeruginosa can effectively be inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP), causing an increased sensitivity to β-lactams among laboratory as well as clinical isolates of P. aeruginosa. Our results suggest that inhibition of the AmpG activity is a potential strategy for enhancing the efficacy of β-lactams against P. aeruginosa, which carries inducible chromosomal ampC, especially in AmpC-hyperproducing clinical isolates.

2000 ◽  
Vol 44 (11) ◽  
pp. 3220-3223 ◽  
Author(s):  
Delphine Girlich ◽  
Thierry Naas ◽  
Samuel Bellais ◽  
Laurent Poirel ◽  
Amal Karim ◽  
...  

ABSTRACT Ten unrelated Hafnia alvei clinical isolates were grouped according to either their low-level and inducible cephalosporinase production or their high-level and constitutive cephalosporinase production phenotype. Their AmpC sequences shared 85 to 100% amino acid identity. The immediate genetic environment ofampC genes was conserved in H. alvei isolates but was different from that found in other ampC-possessing enterobacterial species.


2019 ◽  
Vol 11 (6) ◽  
pp. 496-505 ◽  
Author(s):  
Parik Kakani ◽  
Mithilesh Kajla ◽  
Tania Pal Choudhury ◽  
Lalita Gupta ◽  
Sanjeev Kumar

We characterized the dual oxidase (Duox) gene in the major Indian malaria vector Anopheles stephensi, which regulates the generation of reactive oxygen species. The AsDuox gene encodes for a 1,475-amino-acid transmembrane protein that contains an N-terminal noncytoplasmic heme peroxidase domain, a calcium-binding domain, seven transmembrane domains, and a C-terminal cytoplasmic NADPH domain. Phylogenetic analyses revealed that A. stephensi Duox protein is highly conserved and shares 97–100% amino acid identity with other anopheline Duoxes. AsDuox is expressed in all the developmental stages of A. stephensi and the pupal stages revealed relatively higher expressions. The Duox gene is induced in Plasmodium-infected mosquito midguts, and RNA interference-mediated silencing of this gene suppressed parasite development through activation of the thioester-containing protein 1 pathway. We propose that this highly conserved anopheline Duox, being a Plasmodium agonist, is an excellent target to control malaria parasite development inside the insect host.


2011 ◽  
Vol 56 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Samuel M. Moskowitz ◽  
Mark K. Brannon ◽  
Nandini Dasgupta ◽  
Miyuki Pier ◽  
Nicole Sgambati ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates of this organism (MICs of 8 to 64 mg/liter). To explore the role of PmrAB in high-level clinical polymyxin resistance,P. aeruginosaisolates from chronically colistin-treated cystic fibrosis patients, most with colistin MICs of >512 mg/liter, were analyzed. These cystic fibrosis isolates contained probable gain-of-functionpmrBalleles that conferred polymyxin resistance to strains with a wild-type orpmrABdeletion background. Double mutantpmrBalleles that contained mutations in both the periplasmic and dimerization-phosphotransferase domains markedly augmented polymyxin resistance. Expression of mutantpmrBalleles induced transcription from the promoter of thearnBoperon and stimulated addition of 4-amino-l-arabinose to lipid A, consistent with the known role of this lipid A modification in polymyxin resistance. For some highly polymyxin-resistant clinical isolates, repeated passage without antibiotic selection pressure resulted in loss of resistance, suggesting that secondary suppressors occur at a relatively high frequency and account for the instability of this phenotype. These results indicate thatpmrBgain-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.


2009 ◽  
Vol 58 (10) ◽  
pp. 1309-1313 ◽  
Author(s):  
Mona Anoushiravani ◽  
Tahereh Falsafi ◽  
Vahid Niknam

The aim of this study was to evaluate the role of proton motive force (PMF)-dependent efflux in resistance of Helicobacter pylori to tetracycline (Tet). Tet MIC was determined by agar dilution in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of PMF. Antibiotic accumulation was conducted in the presence or absence of CCCP and the fluorescence of the accumulated antibiotic was measured by spectrofluorometry. In the presence of CCCP, antibiotic accumulation was increased by 2–17-fold in 17/20 Tetr isolates and by 3–10-fold in four of five high-level-resistant mutants. Correlation was observed between this increase and diminution of MIC with CCCP. PMF-dependent efflux mechanisms therefore appear to play an important role in the resistance of clinical isolates of H. pylori to Tet.


2012 ◽  
Vol 6 (06) ◽  
pp. 501-507 ◽  
Author(s):  
Sezgi Senturk ◽  
Seyhan Ulusoy ◽  
Gulgun Bosgelmez-Tinaz ◽  
Aysegul Yagci

Introduction: In the opportunistic pathogen Pseudomonas aeruginosa, the production of several virulence factors depends on quorum sensing (QS) involving N-acylhomoserine lactone signal molecules. In vitro studies have suggested that the QS system is crucial in the pathogenesis of P. aeruginosa. However, it is unclear whether QS systems of P. aeruginosa play the same role during infections. Methodology:  In this study, to explore the contribution of QS systems to the pathogenesis of P. aeruginosa during urinary tract infections, we collected 82 clinical isolates. Detection of N-acyl-homoserine lactones (C12-HSL and C4-HSL) was performed on agar plates employing biosensor strains C. violaceum. Elastase and biofilm production were determined spectrophotometrically. QS genes were detected by PCR and subsequently underwent sequencing. Results and conclusion:  Six isolates were found to be negative in the production of both C12-HSL and C4-HSL and all virulence factors tested.  PCR analysis of these isolates revealed that four isolates contained all four QS genes while one isolate was negative for lasR gene, and one isolate negative for lasI, lasR and rhlR genes. Sequence analyses of these isolates showed that the lasR, lasI, rhlR and rhlI genes had point mutations. The combination of these mutations probably explains their C12-HSL, C4-HSL and virulence factor deficiencies. Results of this study suggest that QS deficient clinical isolates occur and are still capable of causing clinical infections in humans. 


1998 ◽  
Vol 42 (9) ◽  
pp. 2193-2196 ◽  
Author(s):  
Hideki Taba ◽  
Nobuchika Kusano

ABSTRACT Antimicrobial susceptibility testing revealed among 150 clinical isolates of Streptococcus pneumoniae 4 pneumococcal isolates with resistance to fluoroquinolones (MIC of ciprofloxacin, ≥32 μg/ml; MIC of sparfloxacin, ≥16 μg/ml). Gene amplification and sequencing analysis of gyrA andparC revealed nucleotide changes leading to amino acid substitutions in both GyrA and ParC of all four fluoroquinolone-resistant isolates. In the case of strains 182 and 674 for which sparfloxacin MICs were 16 and 64 μg/ml, respectively, nucleotide changes were detected at codon 81 in gyrA and codon 79 in parC; these changes led to an Ser→Phe substitution in GyrA and an Ser→Phe substitution in ParC. Strains 354 and 252, for which sparfloxacin MICs were 128 μg/ml, revealed multiple mutations in both gyrA and parC. These strains exhibited nucleotide changes at codon 85 leading to a Glu→Lys substitution in GyrA, in addition to Ser-79→Tyr and Lys-137→Asn substitutions in ParC. Moreover, strain 252 showed additional nucleotide changes at codon 93, which led to a Trp→Arg substitution in GyrA. These results suggest that sparfloxacin resistance could be due to the multiple mutations in GyrA and ParC. However, it is possible that other yet unidentified mutations may also be involved in the high-level resistance to fluoroquinolones in S. pneumoniae.


1998 ◽  
Vol 42 (8) ◽  
pp. 2074-2083 ◽  
Author(s):  
Thierry Naas ◽  
Wladimir Sougakoff ◽  
Anne Casetta ◽  
Patrice Nordmann

ABSTRACT The Pseudomonas aeruginosa Mus clinical isolate produces OXA-18, a pI 5.5 class D extended-spectrum β-lactamase totally inhibited by clavulanic acid (L. N. Philippon, T. Naas, A.-T. Bouthors, V. Barakett, and P. Nordmann, Antimicrob. Agents Chemother. 41:2188–2195, 1997). A second β-lactamase was cloned, and the recombinant Escherichia coli clone pPL10 expressed a pI 7.4 β-lactamase which conferred high levels of amoxicillin and ticarcillin resistance and which was partially inhibited by clavulanic acid. The 2.5-kb insert from pPL10 was sequenced, and a 266-amino-acid protein (OXA-20) was deduced; this protein has low amino acid identity with most of the class D β-lactamases except OXA-2, OXA-15, and OXA-3 (75% amino acid identity with each). OXA-20 is a restricted-spectrum oxacillinase and is unusually inhibited by clavulanic acid. OXA-20 is a peculiar β-lactamase because its translation initiates with a TTG (leucine) codon, which is rarely used as a translational origin in bacteria. Exploration of the genetic environment of oxa20revealed the presence of the following integron features: (i) a second antibiotic resistance gene, aacA4; (ii) anintI1 gene; and (iii) two 59-base elements, each associated with either oxa20 or aacA4. This integron is peculiar because it lacks the 3′ conserved region, and therefore is not a sul1-associated integron like most of them, and because its 3′ end is located within tnpR, a gene involved in the transposition of Tn5393, a gram-negative transposon.P. aeruginosa Mus produces two novel and unrelated oxacillinases, OXA-18 and OXA-20, both of which are inhibited by clavulanic acid.


2001 ◽  
Vol 45 (12) ◽  
pp. 3517-3523 ◽  
Author(s):  
L. M. Weigel ◽  
G. J. Anderson ◽  
R. R. Facklam ◽  
F. C. Tenover

ABSTRACT Twenty-one clinical isolates of Streptococcus pneumoniae showing reduced susceptibility or resistance to fluoroquinolones were characterized by serotype, antimicrobial susceptibility, and genetic analyses of the quinolone resistance-determining regions (QRDRs) of gyrA,gyrB, parC, and parE. Five strains were resistant to three or more classes of antimicrobial agents. In susceptibility profiles for gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, ofloxacin, sparfloxacin, and trovafloxacin, 14 isolates had intermediate- or high-level resistance to all fluoroquinolones tested except gemifloxacin (no breakpoints assigned). Fluoroquinolone resistance was not associated with serotype or with resistance to other antimicrobial agents. Mutations in the QRDRs of these isolates were more heterogeneous than those previously reported for mutants selected in vitro. Eight isolates had amino acid changes at sites other than ParC/S79 and GyrA/S81; several strains contained mutations in gyrB, parE, or both loci. Contributions to fluoroquinolone resistance by individual amino acid changes, including GyrB/E474K, ParE/E474K, and ParC/A63T, were confirmed by genetic transformation of S. pneumoniae R6. Mutations in gyrB were important for resistance to gatifloxacin but not moxifloxacin, and mutation of gyrAwas associated with resistance to moxifloxacin but not gatifloxacin, suggesting differences in the drug-target interactions of the two 8-methoxyquinolones. The positions of amino acid changes within the four genes affected resistance more than did the total number of QRDR mutations. However, the effect of a specific mutation varied significantly depending on the agent tested. These data suggest that the heterogeneity of mutations will likely increase as pneumococci are exposed to novel fluoroquinolone structures, complicating the prediction of cross-resistance within this class of antimicrobial agents.


2003 ◽  
Vol 84 (12) ◽  
pp. 3233-3238 ◽  
Author(s):  
Caroline Denesvre ◽  
Denis Soubieux ◽  
Gaelle Pin ◽  
Dominique Hue ◽  
Ginette Dambrine

A new family of avian retroviral endogenous sequences designated ev/J or EAV-HP has been identified recently. Here an additional avian ev/J 4.1 endogenous sequence, ev/J 4.1 Rb, is reported. ev/J 4.1 Rb has the most extensive amino acid identity ever described for an endogenous envelope protein with the ALV-J avian leukosis virus. Here, we also demonstrate that ev/J 4.1 Rb functionally pseudotypes murine leukaemia virions and leads to a complete reciprocal interference with ALV-J envelopes. This is the first demonstration of such a high level of envelope interference between endogenous and exogenous avian retroviruses. Our results provide additional clues on the co-evolution of retroviral sequences among vertebrates.


Sign in / Sign up

Export Citation Format

Share Document