scholarly journals Resistance Mechanisms of Multiresistant Pseudomonas aeruginosa Strains from Germany and Correlation with Hypermutation

2007 ◽  
Vol 51 (11) ◽  
pp. 4062-4070 ◽  
Author(s):  
B. Henrichfreise ◽  
I. Wiegand ◽  
W. Pfister ◽  
B. Wiedemann

ABSTRACT In this study, we analyzed the mechanisms of multiresistance for 22 clinical multiresistant and clonally different Pseudomonas aeruginosa strains from Germany. Twelve and 10 strains originated from cystic fibrosis (CF) and non-CF patients, respectively. Overproduction of the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was studied. Furthermore, loss of OprD, alterations in type II topoisomerases, AmpC overproduction, and the presence of 25 acquired resistance determinants were investigated. The presence of a hypermutation phenotype was also taken into account. Besides modifications in GyrA (91%), the most frequent mechanisms of resistance were MexXY-OprM overproduction (82%), OprD loss (82%), and AmpC overproduction (73%). Clear differences between strains from CF and non-CF patients were found: numerous genes coding for aminoglycoside-modifying enzymes and located, partially in combination with β-lactamase genes, in class 1 integrons were found only in strains from non-CF patients. Furthermore, multiple modifications in type II topoisomerases conferring high quinolone resistance levels and overexpression of MexAB-OprM were exclusively detected in multiresistant strains from non-CF patients. Correlations of the detected phenotypes and resistance mechanisms revealed a great impact of efflux pump overproduction on multiresistance in P. aeruginosa. Confirming previous studies, we found that additional, unknown chromosomally mediated resistance mechanisms remain to be determined. In our study, 11 out of 12 strains and 3 out of 10 strains from CF patients and non-CF patients, respectively, were hypermutable. This extremely high proportion of mutator strains should be taken into consideration for the treatment of multiresistant P. aeruginosa.

2020 ◽  
Vol 75 (9) ◽  
pp. 2508-2515 ◽  
Author(s):  
María A Gomis-Font ◽  
Gabriel Cabot ◽  
Irina Sánchez-Diener ◽  
Pablo A Fraile-Ribot ◽  
Carlos Juan ◽  
...  

Abstract Objectives We analysed the dynamics and mechanisms of resistance development to imipenem alone or combined with relebactam in Pseudomonas aeruginosa WT (PAO1) and mutator (PAOMS; ΔmutS) strains. Methods PAO1 or PAOMS strains were incubated for 24 h in Mueller–Hinton Broth with 0.125–64 mg/L of imipenem ± relebactam 4 mg/L. Tubes from the highest antibiotic concentration showing growth were reinoculated in fresh medium containing concentrations up to 64 mg/L of imipenem ± relebactam for 7 days. Two colonies per strain, replicate experiment and antibiotic from early (Day 1) and late (Day 7) cultures were characterized by determining the susceptibility profiles, WGS and determination of the expression of ampC and efflux-pump-coding genes. Virulence was studied in a Caenorhabditis elegans infection model. Results Relebactam reduced imipenem resistance development for both strains, although resistance emerged much faster for PAOMS. WGS indicated that imipenem resistance was associated with mutations in the porin OprD and regulators of ampC, while the mutations in imipenem/relebactam-resistant mutants were located in oprD and regulatoras of MexAB-OprM. High-level imipenem/relebactam resistance was only documented in the PAOMS strain and was associated with an additional specific (T680A) mutation located in the catalytic pocket of ponA (PBP1a) and with reduced virulence in the C. elegans model. Conclusions Imipenem/relebactam could be a useful alternative for the treatment of MDR P. aeruginosa infections, potentially reducing resistance development during treatment. Moreover, this work deciphers the potential resistance mechanisms that may emerge upon the introduction of this novel combination into clinical practice.


2013 ◽  
Vol 62 (9) ◽  
pp. 1317-1325 ◽  
Author(s):  
Ester Fusté ◽  
Lídia López-Jiménez ◽  
Concha Segura ◽  
Eusebio Gainza ◽  
Teresa Vinuesa ◽  
...  

Clonal dissemination of multidrug-resistant Pseudomonas aeruginosa (MDRPA) is a major concern worldwide. The aim of this study was to explore the mechanisms leading to the carbapenem resistance of an MDRPA clone. Isolates were obtained from a surgical wound, sputum, urine and a blood culture. Pulsed-field gel electrophoresis (PFGE) showed high genomic homogeneity of these isolates and confirmed the circulation of an endemic clone belonging to serotype O4. Outer membrane protein (OMP) bands were visualized by SDS-PAGE, meropenem accumulation was measured in a bioassay and integrons were detected by PCR. Efflux pumps were studied for several antimicrobial agents and synergic combinations thereof in the presence or absence of both carbonyl cyanide m-chlorophenylhydrazone (CCCP) and Phe-Arg-β-naphthylamide (PAβN) at final concentrations of 10 and 40 mg l−1, respectively. On OMP electrophoretic profiles, MDRPA showed a reduction of outer membrane porin D (OprD) and PCR demonstrated the presence of a class 1 integron with a cassette encoding aminoglycoside adenyltransferase B (aadB). Meropenem accumulation was slightly higher in bacilli than in the filamentous cells that formed in the presence of antibiotics. Overexpression of the efflux pump MexAB-OprM and a functional MexXY-OprM were detected in all isolates.


ANKEM Dergisi ◽  
2021 ◽  
Author(s):  
Nilüfer Uzunbayır Akel ◽  
Yamaç Tekintaş ◽  
Fethiye Ferda Yılmaz ◽  
İsmail Öztürk ◽  
Mustafa Ökeer ◽  
...  

Pseudomonas aeruginosa is one of the most important causes of hospital infections. Although different antibiotic groups are used for the treatment of P.aeruginosa infections, quinolone groups are distinguished by the advantages of oral administration. However, in recent years, resistance against members of this group has made treatment more difficult. The aim of this study was to investigate the epidemiological relationship and possible mechanisms of resistance in ciprofloxacin resistant P. aeruginosa isolates from Ege University Hospital. The identification of P.aeruginosa bacteria isolated from clinical samples in Ege University Medical Faculty Medical Microbiology Laboratory was determined by VITEK MS automated systems by VITEK compact, antimicrobial susceptibility. The epidemiological relationships of the ciprofloxacin resistant isolates were determined by Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The presence of qnrA, qnrB, qnrS, qepA genes, the quinolone resistance genes and nfxB, mexR, the regulatory genes of the efflux pump, was determined by PCR. The phenylalanine-arginine β-naphthylamide (PAβN) assay was used to determine the activation of the efflux pump. Twenty-two isolates (26.5 %) were found resistant to ciprofloxacin. According to the ERIC-PCR results, 11 unrelated clones were detected. Ciprofloxacin minimum inhibitory concentration (MIC) values were decreased 2-64 times in 10 isolates in the presence of PAIN. No ciprofloxacin MIC change was detected in one isolate. The presence of pump regulatory genes was determined in 10 of the 11 representative isolates, while only qnrB of the genes associated with quinolone resistance was detected in seven representative isolates. qnrA, qnrS, qepA genes were not detected in any isolate. Ciprofloxacin resistant P.aeruginosa isolates are isolated from our hospital. It is noteworthy that the isolates belonging to different genetic groups are in circulation in clinics. Basic resistance mechanisms are thought to be efflux pumps and qnrB genes.


2020 ◽  
pp. 106002802097400
Author(s):  
Kathleen C. Blomquist ◽  
David E. Nix

Objective: This article critically evaluates common Pseudomonas aeruginosa resistance mechanisms and the properties newer β-lactam antimicrobials possess to evade these mechanisms. Data Sources: An extensive PubMed, Google Scholar, and ClinicalTrials.gov search was conducted (January 1995 to July 2020) to identify relevant literature on epidemiology, resistance mechanisms, antipseudomonal agents, newer β-lactam agents, and clinical data available pertaining to P aeruginosa. Study Selection and Data Extraction: Relevant published articles and package inserts were reviewed for inclusion. Data Synthesis: Therapeutic options to treat P aeruginosa infections are limited because of its intrinsic and acquired resistance mechanisms. The goal was to identify advances with newer β-lactams and characterize improvements in therapeutic potential for P aeruginosa infections. Relevance to Patient Care and Clinical Practice: Multidrug-resistant (MDR) P aeruginosa isolates are increasingly encountered from a variety of infections. This review highlights potential activity gains of newer β-lactam antibacterial drugs and the current clinical data to support their use. Pharmacists will be asked to recommend or evaluate the use of these agents and need to be aware of information specific to P aeruginosa, which differs from experience derived from Enterobacterales infections. Conclusions: Newer agents, including ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and cefiderocol, are useful for the treatment of MDR P aeruginosa infections. These agents offer improved efficacy and less toxicity compared with aminoglycosides and polymyxins and can be used for pathogens that are resistant to first-line antipseudomonal β-lactams. Selection of one agent over another should consider availability, turnaround of susceptibility testing, and product cost. Efficacy data specific for pseudomonal infections are limited, and there are no direct comparisons between the newer agents.


2009 ◽  
Vol 53 (6) ◽  
pp. 2266-2273 ◽  
Author(s):  
G. L. Drusano ◽  
Weiguo Liu ◽  
Christine Fregeau ◽  
Robert Kulawy ◽  
Arnold Louie

ABSTRACT The drug interaction terminology (synergy, additivity, antagonism) relates to bacterial kill. The suppression of resistance requires greater drug exposure. We examined the combination of meropenem and tobramycin for kill and resistance suppression (wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB-overexpressed mutant). The drug interaction was additive. The introduction of MexAB overexpression significantly altered the 50% inhibitory concentration of meropenem but not that of tobramycin, resulting in the recovery of a marked increase in colony numbers from drug-containing plates. For the wild type, more tobramycin-resistant isolates than meropenem-resistant isolates were present, and the tobramycin-resistant isolates were harder to suppress. MexAB overexpression unexpectedly caused a significant increase in the number of tobramycin-resistant mutants, as indexed to the area under the curve of slices through the inverted U resistance mountain. The differences were significant, except in the absence of meropenem. We hypothesize that the pump resulted in the presence of less meropenem for organism inhibition, allowing more rounds of replication and also affecting the numbers of tobramycin-resistant mutants. When resistance suppression is explored by combination chemotherapy, it is important to examine the impacts of differing resistance mechanisms for both agents.


2009 ◽  
Vol 53 (11) ◽  
pp. 4930-4933 ◽  
Author(s):  
Esther Viedma ◽  
Carlos Juan ◽  
Joshi Acosta ◽  
Laura Zamorano ◽  
Joaquín R. Otero ◽  
...  

ABSTRACT The mechanisms responsible for the increasing prevalence of colistin-only-sensitive (COS) Pseudomonas aeruginosa isolates in a Spanish hospital were investigated. Pulsed-field gel electrophoresis revealed that 24 (50%) of the studied isolates belonged to the same clone, identified as the internationally spread sequence type 235 (ST235) through multilocus sequence typing. In addition to several mutational resistance mechanisms, an integron containing seven resistance determinants was detected. Remarkably, the extended-spectrum β-lactamase GES-1 and its Gly170Ser carbapenem-hydrolyzing derivative GES-5 were first documented to be encoded in a single integron. This work is the first to describe GES enzymes in Spain and adds them to the growing list of β-lactamases of concern (PER, VIM, and OXA) detected in ST235 clone isolates.


2014 ◽  
Vol 60 (12) ◽  
pp. 783-791 ◽  
Author(s):  
Keith Poole

Pseudomonas aeruginosa is a notoriously antimicrobial-resistant organism that is increasingly refractory to antimicrobial chemotherapy. While the usual array of acquired resistance mechanisms contribute to resistance development in this organism a multitude of endogenous genes also play a role. These include a variety of multidrug efflux loci that contribute to both intrinsic and acquired antimicrobial resistance. Despite their roles in resistance, however, it is clear that these efflux systems function in more than just antimicrobial efflux. Indeed, recent data indicate that they are recruited in response to environmental stress and, therefore, function as components of the organism’s stress responses. In fact, a number of endogenous resistance-promoting genes are linked to environmental stress, functioning as part of known stress responses or recruited in response to a variety of environmental stress stimuli. Stress responses are, thus, important determinants of antimicrobial resistance in P. aeruginosa. As such, they represent possible therapeutic targets in countering antimicrobial resistance in this organism.


2011 ◽  
Vol 140 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Y. J. KIM ◽  
S. I. KIM ◽  
Y. R. KIM ◽  
K. W. HONG ◽  
S. H. WIE ◽  
...  

SUMMARYCarbapenem-resistantAcinetobacter baumannii(CRAB) are an increasing infectious threat in hospitals. We investigated the clinical epidemiology of CRAB infectionsvs. colonization in patients, and examined the mechanisms of resistance associated with elevated minimum inhibitory concentrations (MICs) for carbapenems. From January to June 2009, 75 CRAB strains were collected. CRAB infection was significantly associated with malignancy and a high APACHE II score. The most dominant resistance mechanism was ISAba1preceding OXA-51, producing strains with overexpression of efflux pump. Strains carryingblaOXA-23-like enzymes had higher carbapenem MICs than those carryingblaOXA-51-like enzymes; however, the presence of multiple mechanisms did not result in increased resistance to carbapenems. There was no difference in the resistance mechanisms in strains from infected and colonized patients. The majority of strains were genetically diverse by DNA macrorestriction although there was evidence of clonal spread of four clusters of strains in patients.


2009 ◽  
Vol 53 (11) ◽  
pp. 4783-4788 ◽  
Author(s):  
José-Manuel Rodríguez-Martínez ◽  
Laurent Poirel ◽  
Patrice Nordmann

ABSTRACT The contributions of different mechanisms of resistance to carbapenems among a collection of imipenem- and meropenem-nonsusceptible Pseudomonas aeruginosa isolates were investigated. This screening included the recently reported extended-spectrum cephalosporinases (ESACs) weakly hydrolyzing carbapenems. Eighty-seven percent of the studied isolates were resistant to imipenem. Genes encoding metallo-β-lactamases or carbapenem-hydrolyzing oxacillinases were not identified. The main mechanism associated with imipenem resistance was the loss of outer membrane protein OprD. Identification of overexpressed ESACs and loss of OprD were observed for 65% of the isolates, all being fully resistant to imipenem. Resistance to meropenem was observed in 78% of the isolates, with all but one also being resistant to imipenem. Overexpression of the MexAB-OprM, MexXY-OprM, or MexCD-OprJ efflux systems was observed in 60% of the isolates, suggesting the contribution of efflux mechanisms in resistance to meropenem. The loss of porin OprD and the overproduction of ESACs were observed in 100% and 92% of the meropenem-resistant isolates, respectively. P. aeruginosa can very often accumulate different resistance mechanisms, including ESAC production, leading to carbapenem resistance.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Hélène Puja ◽  
Arnaud Bolard ◽  
Aurélie Noguès ◽  
Patrick Plésiat ◽  
Katy Jeannot

ABSTRACT The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.


Sign in / Sign up

Export Citation Format

Share Document