scholarly journals Emergence of Carbapenem-Resistant Providencia rettgeri and Providencia stuartii Producing IMP-Type Metallo-β-Lactamase in Japan

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Shu Iwata ◽  
Tatsuya Tada ◽  
Tomomi Hishinuma ◽  
Mari Tohya ◽  
Satoshi Oshiro ◽  
...  

ABSTRACT Four Providencia rettgeri isolates and one Providencia stuartii isolate were obtained from urine samples of five patients in 2018 in Japan. All of the isolates were resistant to imipenem and meropenem, and three were highly resistant to both carbapenems, with MICs of 512 μg/ml. The three highly carbapenem-resistant isolates harbored blaIMP-70, encoding a variant of IMP-1 metallo-β-lactamase with two amino acid substitutions (Val67Phe and Phe87Val), and the other two harbored blaIMP-1 and blaIMP-11, respectively. Whole-genome sequencing revealed that an isolate harbored two copies of blaIMP-1 on the chromosome and that the other four harbored a copy of blaIMP-11 or blaIMP-70 in a plasmid. Expression of blaIMP-70 conferred carbapenem resistance in Escherichia coli. Recombinant IMP-70 and an IMP-1 variant with Val67Phe but without Phe87Val had significant higher hydrolytic activities against meropenem than recombinant IMP-1, indicating that an amino acid substitution of Val67Phe affects increased activities against meropenem in IMP-70. These results suggest that Providencia spp. become more highly resistant to carbapenems by acquisition of two copies of blaIMP-1 or by mutation of blaIMP genes with amino acid substitutions, such as blaIMP-70.

2016 ◽  
Vol 60 (6) ◽  
pp. 3709-3716 ◽  
Author(s):  
Yi-Hsiang Cheng ◽  
Tzu-Lung Lin ◽  
Yi-Tsung Lin ◽  
Jin-Town Wang

Colistin is a last-resort antibiotic for treatment of carbapenem-resistantKlebsiella pneumoniae. A recent study indicated that missense mutations in the CrrB protein contribute to colistin resistance. In our previous study, mechanisms of colistin resistance were defined in 17 of 26 colistin-resistantK. pneumoniaeclinical isolates. Of the remaining nine strains, eight were highly resistant to colistin. In the present study,crrABsequences were determined for these eight strains. Six separate amino acid substitutions in CrrB (Q10L, Y31H, W140R, N141I, P151S, and S195N) were detected. Site-directed mutagenesis was used to generatecrrBloci harboring individual missense mutations; introduction of the mutated genes into a susceptible strain, A4528, resulted in 64- to 1,024-fold increases in colistin MICs. ThesecrrBmutants showed increased accumulation ofH239_3062,H239_3059,pmrA,pmrC, andpmrHtranscripts by quantitative reverse transcription (qRT)-PCR. Deletion ofH239_3062(but not that ofH239_3059) in the A4528crrB(N141I) strain attenuated resistance to colistin, andH239_3062was accordingly namedcrrC. Similarly, accumulation ofpmrA,pmrC, andpmrHtranscripts induced bycrrB(N141I) was significantly attenuated upon deletion ofcrrC. Complementation ofcrrCrestored resistance to colistin and accumulation ofpmrA,pmrC, andpmrHtranscripts in acrrB(N141I) ΔcrrCstrain. In conclusion, novel individual CrrB amino acid substitutions (Y31H, W140R, N141I, P151S, and S195N) were shown to be responsible for colistin resistance. We hypothesize that CrrB mutations induce CrrC expression, thereby inducing elevated expression of thepmrHFIJKLMoperon andpmrC(an effect mediated via the PmrAB two-component system) and yielding increased colistin resistance.


2015 ◽  
Vol 59 (10) ◽  
pp. 6625-6628 ◽  
Author(s):  
Wenjing Wu ◽  
Yu Feng ◽  
Alessandra Carattoli ◽  
Zhiyong Zong

ABSTRACTA carbapenem-resistantEnterobacter cloacaestrain, WCHECl-14653, causing a fatal bloodstream infection, was characterized by genome sequencing and conjugation experiments. The strain carried two carbapenemase genes,blaNDM-1andblaKPC-2, on separate IncF plasmids. The coexistence ofblaNDM-1andblaKPC-2conferred slightly higher-level carbapenem resistance compared with that ofblaNDM-1orblaKPC-2alone, and the coexistence of two IncF plasmids may generate new platforms for spreading carbapenemase genes.


2014 ◽  
Vol 58 (10) ◽  
pp. 6302-6305 ◽  
Author(s):  
Tatsuya Tada ◽  
Basudha Shrestha ◽  
Tohru Miyoshi-Akiyama ◽  
Kayo Shimada ◽  
Hiroshi Ohara ◽  
...  

ABSTRACTA novel New Delhi metallo-β-lactamase variant, NDM-12, was identified in a carbapenem-resistantEscherichia coliclinical isolate obtained from a urine sample from a patient in Nepal. NDM-12 differed from NDM-1 by two amino acid substitutions (M154L and G222D). The enzymatic activities of NDM-12 against β-lactams were similar to those of NDM-1, although NDM-12 showed lowerkcat/Kmratios for all β-lactams tested except doripenem. TheblaNDM-12gene was located in a plasmid of 160 kb.


2015 ◽  
Vol 59 (7) ◽  
pp. 4157-4161 ◽  
Author(s):  
Sapna P. Sadarangani ◽  
Scott A. Cunningham ◽  
Patricio R. Jeraldo ◽  
John W. Wilson ◽  
Reeti Khare ◽  
...  

ABSTRACTEmerging antimicrobial resistance in members of theBacteroides fragilisgroup is a concern in clinical medicine. Although metronidazole and carbapenem resistance have been reported inBacteroides thetaiotaomicron, a member of theB. fragilisgroup, they have not, to the best of our knowledge, been reported together in the sameB. thetaiotaomicronisolate. Herein, we report isolation of piperacillin-tazobactam-, metronidazole-, clindamycin-, ertapenem-, and meropenem-resistantB. thetaiotaomicronfrom a patient with postoperative intra-abdominal abscess and empyema. Whole-genome sequencing demonstrated the presence ofnimDwith at least a portion of IS1169upstream, a second putativenimgene, two β-lactamase genes (one of which has not been previously reported), twotetXgenes,tetQ,ermF, twocatgenes, and a number of efflux pumps. This report highlights emerging antimicrobial resistance inB. thetaiotaomicronand the importance of identification and antimicrobial susceptibility testing of selected anaerobic bacteria.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Michael J. Satlin ◽  
Liang Chen ◽  
Gopi Patel ◽  
Angela Gomez-Simmonds ◽  
Gregory Weston ◽  
...  

ABSTRACT Although the New York/New Jersey (NY/NJ) area is an epicenter for carbapenem-resistant Enterobacteriaceae (CRE), there are few multicenter studies of CRE from this region. We characterized patients with CRE bacteremia in 2013 at eight NY/NJ medical centers and determined the prevalence of carbapenem resistance among Enterobacteriaceae bloodstream isolates and CRE resistance mechanisms, genetic backgrounds, capsular types (cps), and antimicrobial susceptibilities. Of 121 patients with CRE bacteremia, 50% had cancer or had undergone transplantation. The prevalences of carbapenem resistance among Klebsiella pneumoniae, Enterobacter spp., and Escherichia coli bacteremias were 9.7%, 2.2%, and 0.1%, respectively. Ninety percent of CRE were K. pneumoniae and 92% produced K. pneumoniae carbapenemase (KPC-3, 48%; KPC-2, 44%). Two CRE produced NDM-1 and OXA-48 carbapenemases. Sequence type 258 (ST258) predominated among KPC-producing K. pneumoniae (KPC-Kp). The wzi154 allele, corresponding to cps-2, was present in 93% of KPC-3-Kp, whereas KPC-2-Kp had greater cps diversity. Ninety-nine percent of CRE were ceftazidime-avibactam (CAZ-AVI)-susceptible, although 42% of KPC-3-Kp had an CAZ-AVI MIC of ≥4/4 μg/ml. There was a median of 47 h from bacteremia onset until active antimicrobial therapy, 38% of patients had septic shock, and 49% died within 30 days. KPC-3-Kp bacteremia (adjusted odds ratio [aOR], 2.58; P = 0.045), cancer (aOR, 3.61, P = 0.01), and bacteremia onset in the intensive care unit (aOR, 3.79; P = 0.03) were independently associated with mortality. Active empirical therapy and combination therapy were not associated with survival. Despite a decade of experience with CRE, patients with CRE bacteremia have protracted delays in appropriate therapies and high mortality rates, highlighting the need for rapid diagnostics and evaluation of new therapeutics.


2013 ◽  
Vol 57 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Jianhui Xiong ◽  
David C. Alexander ◽  
Jennifer H. Ma ◽  
Maxime Déraspe ◽  
Donald E. Low ◽  
...  

ABSTRACTPseudomonas aeruginosa96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 ofPseudomonas fluorescensSBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. TheblaIMP-9-carrying integron containedaacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRAand downstream by a completetnioperon of Tn402and amermodule, named Tn6016. The second integron carriedaacA4→catB8a→blaOXA-10and was flanked by Tn1403-liketnpRAand asul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and twopiloperons. The replication and maintenance systems exhibit similarity to a genomic island ofRalstonia solanacearumGM1000. Codon usage analysis suggests the recent acquisition ofblaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Alina Iovleva ◽  
Roberta T. Mettus ◽  
Christi L. McElheny ◽  
Marissa P. Griffith ◽  
Mustapha M. Mustapha ◽  
...  

ABSTRACT OXA-232 is an OXA-48-group class D β-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 μg/ml to 512 μg/ml and the meropenem MIC increased from 0.125 μg/ml to 32 μg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Jule Anna Horlbog ◽  
Hyein Jang ◽  
Gopal Gopinath ◽  
Roger Stephan ◽  
Claudia Guldimann

Here, we report the whole-genome sequences of six Listeria monocytogenes strains isolated from meat and milk products in Switzerland. All of these strains carry premature stop codons or amino acid deletions in inlA.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Lu Liu ◽  
Yu Feng ◽  
Haiyan Long ◽  
Alan McNally ◽  
Zhiyong Zong

ABSTRACT A carbapenem-resistant Klebsiella pneumoniae isolate was recovered from human blood. Its whole-genome sequence was obtained using Illumina and long-read MinION sequencing. The strain belongs to sequence type 273 (ST273), which was found recently and caused an outbreak in Southeast Asia. It has two carbapenemase genes, bla NDM-1 (carried by an ST7 IncN self-transmissible plasmid) and bla IMP-4 (located on a self-transmissible IncHI5 plasmid). Non-KPC-producing ST237 may represent a lineage of carbapenem-resistant K. pneumoniae , which warrants further monitoring.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Ana M. Rada ◽  
Elsa De La Cadena ◽  
Carlos Agudelo ◽  
Cesar Capataz ◽  
Nataly Orozco ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of blaKPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of blaKPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of blaKPC-2 using both short and long read sequencing. We found that spread of blaKPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene “epidemic” was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with blaKPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of blaKPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.


Sign in / Sign up

Export Citation Format

Share Document