scholarly journals Molecular Epidemiology of CTX-M-Producing Escherichia coli Isolates at a Tertiary Medical Center in Western Pennsylvania

2009 ◽  
Vol 53 (11) ◽  
pp. 4733-4739 ◽  
Author(s):  
Hanna E. Sidjabat ◽  
David L. Paterson ◽  
Jennifer M. Adams-Haduch ◽  
Lindsay Ewan ◽  
Anthony W. Pasculle ◽  
...  

ABSTRACT A combination of phenotypic and genotypic methods was used to investigate 70 unique Escherichia coli clinical isolates identified as producing extended-spectrum β-lactamases (ESBLs) at a medical center in Pittsburgh, PA, between 2007 and 2008. Fifty-seven isolates (81%) produced CTX-M-type ESBLs, among which CTX-M-15 was predominant (n = 46). Isolates producing CTX-M-2, -9, -14, and -65 were also identified. One CTX-M-producing isolate coproduced CMY-2 cephalosporinase. Ten isolates (14%) produced SHV-type ESBLs, either SHV-5 or SHV-7. Two isolates produced only CMY-2 or -32. Pulsed-field gel electrophoresis revealed the presence of two major clusters of CTX-M-15-producing E. coli isolates, one in phylotype B2 (n = 15) and the other in phylotype A (n = 19). Of four phylotype B2 isolates that were able to transfer the bla CTX-M-15-carrying plasmids, three showed fingerprints related (>60%) to those of plasmids from phylotype A isolates. In phylotype B2, all CTX-M-15-producing isolates, as well as three isolates producing CTX-M-14, two producing SHV-5, and one producing SHV-7, belonged to the international epidemic clone defined by serotype O25:H4 and sequence type 131. The plasmids from eight of nine CTX-M-15-producing E. coli isolates of phylotype A that were examined were highly related to each other and were also found in two isolates belonging to phylotype D, suggesting horizontal transfer of this bla CTX-M-15-carrying plasmid between phylotypes. Our findings underscore the need to further investigate the epidemiology and virulence of CTX-M-producing E. coli in the United States.

2017 ◽  
Vol 83 (6) ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Paul Thuras ◽  
Sarah Clock ◽  
...  

ABSTRACT Chicken meat products are hypothesized to be vehicles for transmitting antimicrobial-resistant and extraintestinal pathogenic Escherichia coli (ExPEC) to consumers. To reassess this hypothesis in the current era of heightened concerns about antimicrobial use in food animals, we analyzed 175 chicken-source E. coli isolates from a 2013 Consumer Reports national survey. Isolates were screened by PCR for ExPEC-defining virulence genes. The 25 ExPEC isolates (12% of 175) and a 2:1 randomly selected set of 50 non-ExPEC isolates were assessed for their phylogenetic/clonal backgrounds and virulence genotypes for comparison with their resistance profiles and the claims on the retail packaging label (“organic,” “no antibiotics,” and “natural”). Compared with the findings for non-ExPEC isolates, the group of ExPEC isolates had a higher prevalence of phylogroup B2 isolates (44% versus 4%; P < 0.001) and a lower prevalence of phylogroup A isolates (4% versus 30%; P = 0.001), a higher prevalence of multiple individual virulence genes, higher virulence scores (median, 11 [range, 4 to 16] versus 8 [range, 1 to 14]; P = 0.001), and higher resistance scores (median, 4 [range, 0 to 8] versus 3 [range, 0 to 10]; P < 0.001). All five isolates of sequence type 131 (ST131) were ExPEC (P = 0.003), were as extensively resistant as the other isolates tested, and had higher virulence scores than the other isolates tested (median, 12 [range, 11 to 13] versus 8 [range, 1 to 16]; P = 0.005). Organic labeling predicted lower resistance scores (median, 2 [range, 0 to 3] versus 4 [range, 0 to 10]; P = 0.008) but no difference in ExPEC status or virulence scores. These findings document a persisting reservoir of extensively antimicrobial-resistant ExPEC isolates, including isolates from ST131, in retail chicken products in the United States, suggesting a potential public health threat. IMPORTANCE We found that among Escherichia coli isolates from retail chicken meat products purchased across the United States in 2013 (many of these isolates being extensively antibiotic resistant), a minority had genetic profiles suggesting an ability to cause extraintestinal infections in humans, such as urinary tract infection, implying a risk of foodborne disease. Although isolates from products labeled “organic” were less extensively antibiotic resistant than other isolates, they did not appear to be less virulent. These findings suggest that retail chicken products in the United States, even if they are labeled “organic,” pose a potential health threat to consumers because they are contaminated with extensively antibiotic-resistant and, presumably, virulent E. coli isolates.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Mary J. Burgess ◽  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian Johnston ◽  
Connie Clabots ◽  
...  

Abstract Background.  Emerging data implicate long-term care facilities (LTCFs) as reservoirs of fluoroquinolone-resistant (FQ-R) Escherichia coli of sequence type 131 (ST131). We screened for ST131 among LTCF residents, characterized isolates molecularly, and identified risk factors for colonization. Methods.  We conducted a cross-sectional study using a single perianal swab or stool sample per resident in 2 LTCFs in Olmsted County, Minnesota, from April to July 2013. Confirmed FQ-R E. coli isolates underwent polymerase chain reaction-based phylotyping, detection of ST131 and its H30 and H30-Rx subclones, extended virulence genotyping, and pulsed-field gel electrophoresis (PFGE) analysis. Epidemiological data were collected from medical records. Results.  Of 133 fecal samples, 33 (25%) yielded FQ-R E. coli, 32 (97%) of which were ST131. The overall proportion with ST131 intestinal colonization was 32 of 133 (24%), which differed by facility: 17 of 41 (42%) in facility 1 vs 15 of 92 (16%) in facility 2 (P = .002). All ST131 isolates represented the H30 subclone, with virulence gene and PFGE profiles resembling those of previously described ST131 clinical isolates. By PFGE, certain isolates clustered both within and across LTCFs. Multivariable predictors of ST131 colonization included inability to sign consent (odds ratio [OR], 4.16 [P = .005]), decubitus ulcer (OR, 4.87 [ P = .04]), and fecal incontinence (OR, 2.59 [P = .06]). Conclusions.  Approximately one fourth of LTCF residents carried FQ-R ST131 E. coli resembling ST131 clinical isolates. Pulsed-field gel electrophoresis suggested intra- and interfacility transmission. The identified risk factors suggest that LTCF residents who require increased nursing care are at greatest risk for ST131 colonization, possibly due to healthcare-associated transmission.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
James R. Johnson ◽  
Stephen Porter ◽  
Paul Thuras ◽  
Mariana Castanheira

ABSTRACT The H30 subclone of Escherichia coli sequence type 131 (ST131-H30) has become the leading antimicrobial resistance E. coli lineage in the United States and often exhibits resistance to one or both of the two key antimicrobial classes for treating Gram-negative infections, extended-spectrum cephalosporins (ESCs) and fluoroquinolones (FQs). However, the timing of and reasons for its recent emergence are inadequately defined. Accordingly, from E. coli clinical isolates collected systematically across the United States by the SENTRY Antimicrobial Surveillance Program in 2000, 2003, 2006, and 2009, 234 isolates were selected randomly, stratified by year, within three resistance categories: (i) ESC-reduced susceptibility, regardless of FQ phenotype (ESC-RS); (ii) FQ resistance, ESC susceptible (FQ-R); and (iii) FQ susceptible, ESC susceptible (FQ-S). Susceptibility profiles, phylogroup, ST, ST131 subclone, and virulence genotypes were determined, and temporal trends and between-variable associations were assessed statistically. From 2000 to 2006, concurrently with the emergence of ESC-RS and FQ-R strains, the prevalence of (virulence-associated) phylogroup B2 among such strains also rose dramatically, due entirely to rapid emergence of ST131, especially H30. By 2009, H30 was the dominant E. coli lineage overall (22%), accounting for a median of 43% of all single-agent and multidrug resistance (68% for ciprofloxacin). H30's emergence increased the net virulence gene content of resistant (especially FQ-R) isolates, giving stable overall virulence gene scores despite an approximately 4-fold expansion of the historically less virulent resistant population. These findings define more precisely the timing and tempo of H30's emergence in the United States, identify possible reasons for it, and suggest potential consequences, including more frequent and/or aggressive antimicrobial-resistant infections.


2013 ◽  
Vol 76 (12) ◽  
pp. 2018-2023 ◽  
Author(s):  
XIAO-PING LIAO ◽  
BAO-TAO LIU ◽  
QIU-E YANG ◽  
JIAN SUN ◽  
LIANG LI ◽  
...  

A total of 247 Escherichia coli isolates (148 from diseased or dead poultry and 99 from diseased pets in the People's Republic of China) were screened for extended-spectrum β-lactamase (ESBL) determinants by PCR and sequencing. Then, 16S rRNA methylase genes were detected among ESBL-producing isolates. Clonal relatedness of the E. coli isolates was examined by pulsed-field gel electrophoresis. Conjugation experiments were performed to investigate the association of 16S rRNA methylases and ESBLs, and plasmid contents were also characterized. Among 247 E. coli isolates, 74 (29.96%) isolates were positive for blaCTX-M genes, 42 from pets (12 from cats and 30 from dogs) and 32 from poultry (12 from chickens and 20 from ducks). The most common CTX-M type in isolates from pets was blaCTX-M-14, whereas blaCTX-M-27 was the most common for poultry. rmtB was dectected in 39 of the 74 blaCTX-M-positive isolates, 18 from pets and 21 from poultry. One strain from a pet was found to harbor blaCTX-M-14, blaCTX-M-15, and rmtB. blaCTX-M and rmtB were found to be colocated on the same transferable plasmid in 16 isolates. These genes were on the same or similar plasmids (eight F2:A-:B- and two IncN) in isolates from ducks, whereas they were colocated on the similar F2:A-:B- or similar F33:A-:B- plasmids in isolates of pets origin. In conclusion, similar F2:A-:B-plasmids and similar F33:A-:B- plasmids are responsible for the dissemination of both rmtB and blaCTX-M genes in E. coli isolates from poultry and pets, respectively.


2008 ◽  
Vol 71 (9) ◽  
pp. 1752-1760 ◽  
Author(s):  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
NORASAK KALCHAYANAND ◽  
DAVID A. KING ◽  
...  

Transportation from the feedlot and lairage at the processing plant have been identified as potential sources of Escherichia coli O157:H7 and Salmonella hide contamination. The objective of this study was to perform a comprehensive tracking analysis of E. coli O157:H7 and Salmonella associated with beef cattle from the feedlot through processing. Cattle (n = 581) were sampled in a feedlot, then transported in multiple lots to three commercial, fed beef processing plants in the United States, where they were sampled again. Samples were collected from the tractor trailers prior to loading cattle and from the lairage environment spaces prior to entry of the study cattle. Pathogen prevalence on cattle hides increased on every lot of cattle between exiting the feedlot and beginning processing. Prior to loading cattle, E. coli O157:H7 was found in 9 (64%) of 14 tractor trailers. E. coli O157:H7 was detected in over 60% of the samples from each lairage environment area, while Salmonella was detected in over 70% of the samples from each lairage environment area. E. coli O157:H7 and Salmonella isolates (n 3,645) were analyzed using pulsed-field gel electrophoresis. The results of the pulsed-field gel electrophoresis tracking indicate that the transfer of bacteria onto cattle hides that occurs in the lairage environments of U.S beef processing plants accounts for a larger proportion of the hide and carcass contamination than does the initial bacterial population found on the cattle exiting the feedlot. Finally, the results of this study indicate that hide wash cabinets are effective in removing contamination derived from the lairage environment.


2019 ◽  
Vol 57 (5) ◽  
Author(s):  
James R. Johnson ◽  
Brian D. Johnston ◽  
Stephen B. Porter ◽  
Connie Clabots ◽  
Tricia L. Bender ◽  
...  

ABSTRACT Escherichia coli sequence type 1193 (ST1193) is an emerging multidrug-resistant pathogen. We performed longitudinal and cross-sectional surveillance for ST1193 among clinical and fecal E. coli isolates from Minneapolis Veterans Affairs Medical Center (VAMC) patients and their household members, other Minnesota centers, and national VAMCs and compared these ST1193 isolates with archival human and canine ST1193 isolates from Australia (2008). We also developed and extensively validated a novel multiplex PCR assay for ST1193 and its characteristic fimH64 (type 1 fimbrial adhesin) allele. We found that ST1193-H64 (where “H64” refers to a phylogenetic subdivision within ST1193 that is characterized by the fimH64 allele), which was uniformly fluoroquinolone resistant, appeared to emerge in the United States in a geographically staggered fashion beginning around 2011. Its prevalence among clinical and fecal E. coli isolates at the Minneapolis VAMC rose rapidly beginning in 2013, peaked in early 2017, and then plateaued or declined. In comparison with other ST14 complex (STc14) isolates, ST1193-H64 isolates were more extensively multidrug resistant, whereas their virulence genotypes were less extensive but included (uniquely) K1 capsule and fimH64. Pulsed-field gel electrophoresis separated ST1193-H64 isolates from other STc14 isolates and showed genetic commonality between archival Australian versus recent U.S. isolates, fecal versus clinical isolates, and human versus canine isolates. Three main ST1193 pulsotypes differed significantly in resistance profiles and capsular types; emergent pulsotype 2123 was associated with trimethoprim-sulfamethoxazole resistance and K1 (versus K5) capsule. These findings clarify ST1193-H64’s temporal prevalence trends as a fluoroquinolone-resistant pathogen and commensal; document clonal subsets with distinctive geographic, temporal, resistance, and virulence gene associations; and establish a new laboratory tool for rapid and simple detection of ST1193-H64.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
James R. Johnson ◽  
Stephen Porter ◽  
Paul Thuras ◽  
Mariana Castanheira

Abstract Background Extraintestinal Escherichia coli infections are increasingly challenging due to emerging antimicrobial resistance, including resistance to extended-spectrum beta-lactams and fluoroquinolones. Sequence type 131 (ST131) is a leading contributor. Methods Three hundred sixty E. coli clinical isolates from across the United States (2011–2012), selected randomly from the SENTRY collection within 3 resistance categories (extended-spectrum cephalosporin [ECS]–reduced susceptibility [RS]; fluoroquinolone-resistant, ESC-susceptible; and fluoroquinolone-susceptible, ESC-susceptible) were typed for phylogroup, sequence type complex (STc), subsets thereof, virulence genotype, O type, and beta-lactamase genes. Molecular results were compared with susceptibility profile, specimen type, age, and sex. Results Phylogroup B2 accounted for most isolates, especially fluoroquinolone-resistant isolates (83%). Group B2–derived ST131 and its H30 subclone (divided between H30Rx and H30R1) predominated, especially among ESC-RS and fluoroquinolone-resistant isolates. In contrast, among fluoroquinolone-susceptible isolates, group B2–derived STc73 and STc95 predominated. Within each resistance category, ST131 isolates exhibited more extensive resistance and/or virulence profiles than non-ST131 isolates. ST131-H30 was distributed broadly by geographical region, age, and specimen type and exhibited distinctive beta-lactamase genes. Back-calculations indicated that within the source population ST131 accounted for 26.4% of isolates overall (vs 17% in 2007), including 19.8% ST131-H30, 13.2% ST131-H30R1, and 6.6% each ST131-H30Rx and non-H30 ST131. Conclusions ST131-H30, with its ESC resistance-associated H30Rx subset, caused most antimicrobial-resistant E. coli infections across the United States in 2011–2012 and, since 2007, increased in relative prevalence by &gt;50%. Focused attention to this strain could help combat the current E. coli resistance epidemic.


2011 ◽  
Vol 55 (6) ◽  
pp. 2986-2988 ◽  
Author(s):  
Gisele Peirano ◽  
Paul C. Schreckenberger ◽  
Johann D. D. Pitout

ABSTRACTAn NDM-1 carbapenemase-producingEscherichia coliisolate of sequence type 131 (ST131) that belonged to phylogenetic group B2 was obtained from a patient with a urinary tract infection who returned to the United States after a recent hospitalization while visiting India. NDM-1-producingE. coliST131 had significantly more virulence factors than NDM-1-producingE. coliST101, previously isolated from a patient in Canada. The presence of NDM β-lactamases in a very successful and virulentE. colisequence type is of concern.


2006 ◽  
Vol 50 (9) ◽  
pp. 3098-3101 ◽  
Author(s):  
Shiri Navon-Venezia ◽  
Inna Chmelnitsky ◽  
Azita Leavitt ◽  
Mitchell J. Schwaber ◽  
David Schwartz ◽  
...  

ABSTRACT Carbapenem resistance in Escherichia coli is rare. We report four genetically unrelated carbapenem-resistant E. coli isolates cultured from four patients hospitalized in Tel Aviv Medical Center. PCR, sequencing, and Southern blot analysis identified KPC-2 as the imipenem-hydrolyzing enzyme in all four strains, carried on different plasmids with a possible common origin. This is the first discovery of KPC-2 in E. coli and the first report of this enzyme originating outside the United States.


Sign in / Sign up

Export Citation Format

Share Document