scholarly journals Potential Targets for Antifungal Drug Discovery Based on Growth and Virulence in Candida albicans

2015 ◽  
Vol 59 (10) ◽  
pp. 5885-5891 ◽  
Author(s):  
Xiuyun Li ◽  
Yinglong Hou ◽  
Longtao Yue ◽  
Shuyuan Liu ◽  
Juan Du ◽  
...  

ABSTRACTFungal infections, especially infections caused byCandida albicans, remain a challenging problem in clinical settings. Despite the development of more-effective antifungal drugs, their application is limited for various reasons. Thus, alternative treatments with drugs aimed at novel targets inC. albicansare needed. Knowledge of growth and virulence in fungal cells is essential not only to understand their pathogenic mechanisms but also to identify potential antifungal targets. This article reviews the current knowledge of the mechanisms of growth and virulence inC. albicansand examines potential targets for the development of new antifungal drugs.

2010 ◽  
Vol 31 (2) ◽  
pp. 93
Author(s):  
Tania C Sorrrell ◽  
Julianne T Djordjevic ◽  
Sharon CA Chen ◽  
Katrina A Jolliffe

Invasive fungal infections often respond poorly to antifungal drugs. The fungal invasin phospholipase B (PLB) and/or its biosynthetic pathway are novel targets for drug development. Compounds with structural similarities to phosphatidylcholine, which is a preferred substrate of cryptococcal PLB1, were purchased or synthesised. For many, there was a correlation between antifungal and anti-PLB activity but not all demonstrated selectivity for fungal compared with mammalian phospholipase, and some were toxic to mammalian cells in culture. The most promising, a bis-pyridinium compound, is undergoing toxicity testing in mice. Miltefosine (MI), a stable phospholipid analogue used in the treatment of leishmaniasis also has broad spectrum fungicidal activity, but inhibition of PLB is not its major mode of action. To improve antifungal potency and reduce toxicity of MI, analogues of this alkyl phospholipid have been synthesised and are under investigation.


2021 ◽  
Vol 9 (3) ◽  
pp. 500 ◽  
Author(s):  
Priyanka Bapat ◽  
Gurbinder Singh ◽  
Clarissa J. Nobile

Fungal infections are increasing in prevalence worldwide, especially in immunocompromised individuals. Given the emergence of drug-resistant fungi and the fact that there are only three major classes of antifungal drugs available to treat invasive fungal infections, there is a need to develop alternative therapeutic strategies effective against fungal infections. Candida albicans is a commensal of the human microbiota that is also one of the most common fungal pathogens isolated from clinical settings. C. albicans possesses several virulence traits that contribute to its pathogenicity, including the ability to form drug-resistant biofilms, which can make C. albicans infections particularly challenging to treat. Here, we explored red, green, and blue visible lights alone and in combination with common photosensitizing compounds for their efficacies at inhibiting and disrupting C. albicans biofilms. We found that blue light inhibited biofilm formation and disrupted mature biofilms on its own and that the addition of photosensitizing compounds improved its antibiofilm potential. Red and green lights, however, inhibited biofilm formation only in combination with photosensitizing compounds but had no effects on disrupting mature biofilms. Taken together, these results suggest that photodynamic therapy may be an effective non-drug treatment for fungal biofilm infections that is worthy of further exploration.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Shamoon Naseem ◽  
Lois M. Douglas ◽  
James B. Konopka

ABSTRACT Invasive growth in tissues by the human fungal pathogen Candida albicans is promoted by a switch from budding to hyphal morphogenesis that is stimulated by multiple environmental factors that can vary at different sites of infection. To identify genes that promote invasive growth in the oral cavity to cause oropharyngeal candidiasis (OPC), we first identified C. albicans mutants that failed to invade agar medium. Analysis of nine severely defective mutants in a mouse model of OPC revealed that the strongest defects were seen for the rvs161Δ and rvs167Δ mutants, which lack amphiphysin proteins needed for endocytosis. The rvsΔ mutants initially adhered to the tongue but failed to invade efficiently and were lost from the oral cavity. Previous studies indicated that rvsΔ mutants formed filamentous hyphae in the kidney albeit with morphological abnormalities, suggesting that the rvsΔ mutants were influenced by factors that vary at different sites of infection. Consistent with this, increasing concentrations of CO2, an inducer of hyphal growth that is more abundant in internal organs than air, partially rescued the invasive-growth defects of the rvsΔ mutants in vitro. Interestingly, preinduction of the rvsΔ mutants to form hyphae prior to introduction into the oral cavity restored their ability to cause OPC, identifying a key role for endocytosis in initiating invasive hyphal growth. These results highlight the influence of distinct environmental factors in promoting invasive hyphal growth in the oral cavity and indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC. IMPORTANCE Oropharyngeal candidiasis (OPC) is a common fungal infection that is associated with severe morbidity. Another concern is that patients at risk for developing OPC often take long courses of antifungal drugs, which can lead to the emergence of drug-resistant C. albicans strains. We therefore identified nine mutants with defects in undergoing invasive hyphal growth in the oral cavity, increasing the number of genes known to be involved in OPC by more than 30%. The two strongest mutants, rvs161Δ and rvs167Δ, have defects in endocytosis. The rvsΔ mutants appear to have a specific defect in initiating invasive growth, as preinducing the cells to form hyphae prior to infection restored their ability to cause OPC. These results indicate that blocking endocytosis could have therapeutic value in preventing the initiation of OPC without leading to development of resistance against drugs currently used to treat fungal infections.


Author(s):  
Fatemehsadat Jamzivar ◽  
Masoomeh Shams-Ghahfarokhi ◽  
Mansoor Khoramizadeh ◽  
Niloufar Yousefi ◽  
Mohammadhassan Gholami-Shabani

Over the past decades, the incidence of life-threatening fungal infections has increased dramatically in particular among patients with hampered immune function. Fungal infections cause around 1.5 million deaths annually, superior to malaria and tuberculosis. With respect to high toxicity, narrow spectrum of activity and drug resistance to current antifungals, there is an urgent need to discover novel leads from molecules of natural origin especially those derived from plants and microorgan- isms for antifungal drug discovery. Among antifungal drugs introduced into the clinic, those affecting ergosterol biosynthesis are still superior to other classes and the vital role of ergosterol in fungal growth and development. This review highlights current knowledge about available antifungal agents and further issues on antifungal drug discovery from compounds of nat- ural origin which affect ergosterol biosynthesis. Special attention is made to the fungal sterol C24-methyltransferase (SMT), a crucial enzyme in ergosterol biosynthesis pathway as a novel target for rational drug design.


2013 ◽  
Vol 57 (8) ◽  
pp. 3681-3687 ◽  
Author(s):  
Samuel A. Siles ◽  
Anand Srinivasan ◽  
Christopher G. Pierce ◽  
José L. Lopez-Ribot ◽  
Anand K. Ramasubramanian

ABSTRACTCandida albicansis the most common etiologic agent of systemic fungal infections with unacceptably high mortality rates. The existing arsenal of antifungal drugs is very limited and is particularly ineffective againstC. albicansbiofilms. To address the unmet need for novel antifungals, particularly those active against biofilms, we have screened a small molecule library consisting of 1,200 off-patent drugs already approved by the Food and Drug Administration (FDA), the Prestwick Chemical Library, to identify inhibitors ofC. albicansbiofilm formation. According to their pharmacological applications that are currently known, we classified these bioactive compounds as antifungal drugs, as antimicrobials/antiseptics, or as miscellaneous drugs, which we considered to be drugs with no previously characterized antifungal activity. Using a 96-well microtiter plate-based high-content screening assay, we identified 38 pharmacologically active agents that inhibitC. albicansbiofilm formation. These drugs were subsequently tested for their potency and efficacy against preformed biofilms, and we identified three drugs with novel antifungal activity. Thus, repurposing FDA-approved drugs opens up a valuable new avenue for identification and potentially rapid development of antifungal agents, which are urgently needed.


2019 ◽  
Vol 15 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Manzoor Ahmad Malik ◽  
Shabir Ahmad Lone ◽  
Parveez Gull ◽  
Ovas Ahmad Dar ◽  
Mohmmad Younus Wani ◽  
...  

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required. Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates. Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies. Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Emily Chen ◽  
Meng S. Choy ◽  
Katalin Petrényi ◽  
Zoltán Kónya ◽  
Ferenc Erdődi ◽  
...  

ABSTRACT The opportunistic pathogen Candida is one of the most common causes of nosocomial bloodstream infections. Because candidemia is associated with high mortality rates and because the incidences of multidrug-resistant Candida are increasing, efforts to identify novel targets for the development of potent antifungals are warranted. Here, we describe the structure and function of the first member of a family of protein phosphatases that is specific to fungi, protein phosphatase Z1 (PPZ1) from Candida albicans . We show that PPZ1 not only is active but also is as susceptible to inhibition by the cyclic peptide inhibitor microcystin-LR as its most similar human homolog, protein phosphatase 1α (PP1α [GLC7 in the yeast Saccharomyces cerevisiae ]). Unexpectedly, we also discovered that, despite its 66% sequence identity to PP1α, the catalytic domain of PPZ1 contains novel structural elements that are not present in PP1α. We then used activity and pulldown assays to show that these structural differences block a large subset of PP1/GLC7 regulatory proteins from effectively binding PPZ1, demonstrating that PPZ1 does not compete with GLC7 for its regulatory proteins. Equally important, these unique structural elements provide new pockets suitable for the development of PPZ1-specific inhibitors. Together, these studies not only reveal why PPZ1 does not negatively impact GLC7 activity in vivo but also demonstrate that the family of fungus-specific phosphatases—especially PPZ1 from C. albicans —are highly suitable targets for the development of novel drugs that specifically target C. albicans without cross-reacting with human phosphatases. IMPORTANCE Candida albicans is a medically important human pathogen that is the most common cause of fungal infections in humans. In particular, approximately 46,000 cases of health care-associated candidiasis occur each year in the United States. Because these infections are associated with high mortality rates and because multiple species of Candida are becoming increasingly resistant to antifungals, there are increasing efforts to identify novel targets that are essential for C. albicans virulence. Here we use structural and biochemical approaches to elucidate how a member of a fungus-specific family of enzymes, serine/threonine phosphatase PPZ1, functions in C. albicans . We discovered multiple unique features of PPZ1 that explain why it does not cross-react with, and in turn compete for, PP1-specific regulators, a long-standing question in the field. Most importantly, however, these unique features identified PPZ1 as a potential target for the development of novel antifungal therapeutics that will provide new, safe, and potent treatments for candidiasis in humans.


2015 ◽  
Vol 59 (9) ◽  
pp. 5396-5404 ◽  
Author(s):  
Kangji Wang ◽  
Zhenying Zhang ◽  
Xi Chen ◽  
Xianyun Sun ◽  
Cheng Jin ◽  
...  

ABSTRACTAzoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungaldrugsensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription ofads-4inNeurospora crassacells increased when they were subjected to ketoconazole treatment, whereas the deletion ofads-4resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression ofads-4increased resistance to fluconazole and ketoconazole inN. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress inN. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of theads-4-homologous gene Afads-4inAspergillus fumigatuscaused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Cristina Lazzarini ◽  
Krupanandan Haranahalli ◽  
Robert Rieger ◽  
Hari Krishna Ananthula ◽  
Pankaj B. Desai ◽  
...  

ABSTRACTThe incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active againstCryptococcus neoformansin vitroand had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document