scholarly journals Plasmodium falciparum Kelch Propeller Polymorphisms in Clinical Isolates from Ghana from 2007 to 2016

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Sena A. Matrevi ◽  
Philip Opoku-Agyeman ◽  
Neils B. Quashie ◽  
Selassie Bruku ◽  
Benjamin Abuaku ◽  
...  

ABSTRACT The continuous surveillance of polymorphisms in the kelch propeller domain of Plasmodium falciparum from Africa is important for the discovery of the actual markers of artemisinin resistance in the region. The information on the markers is crucial for control strategies involving chemotherapy and chemoprophylaxis for residents and nonimmune travelers to the country. Polymorphisms in the kelch propeller domain of Ghanaian malaria parasites from three different ecological zones at several time periods were assessed. A total of 854 archived samples (2007 to 2016) collected from uncomplicated malaria patients aged ≤9 years old from 10 sentinel sites were used. Eighty-four percent had wild-type sequences (PF3D7_1343700), while many of the mutants had mostly nonsynonymous mutations clustered around codons 404 to 650. Variants with different amino acid changes of the codons associated with artemisinin (ART) resistance validated markers were observed in Ghanaian isolates: frequencies for I543I, I543S, I543V, R561P, R561R, and C580V were 0.12% each and 0.6% for R539I. Mutations reported from African parasites, A578S (0.23%) and Q613L (0.23%), were also observed. Three persisting nonsynonymous (NS) mutations, N599Y (0.005%), K607E (0.004%), and V637G (0.004%), were observed in 3 of the 5 time periods nationally. The presence of variants of the validated markers of artemisinin resistance as well as persisting polymorphisms after 14 years of artemisinin-based combination therapy use argues for continuous surveillance of the markers. The molecular markers of artemisinin resistance and the observed variants will be monitored subsequently as part of ongoing surveillance of antimalarial drug efficacy/resistance studies in the country.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Minh Cuong Duong ◽  
Oanh Kieu Nguyet Pham ◽  
Phong Thanh Nguyen ◽  
Van Vinh Chau Nguyen ◽  
Phu Hoan Nguyen

Abstract Background Drug-resistant falciparum malaria is an increasing public health burden. This study examined the magnitude of Plasmodium falciparum infection and the patterns and predictors of treatment failure in Vietnam. Methods Medical records of all 443 patients with malaria infection admitted to the Hospital for Tropical Diseases between January 2015 and December 2018 were used to extract information on demographics, risk factors, symptoms, laboratory tests, treatment, and outcome. Results More than half (59.8%, 265/443, CI 55.1–64.4%) of patients acquired Plasmodium falciparum infection of whom 21.9% (58/265, CI 17.1–27.4%) had severe malaria, while 7.2% (19/265, CI 4.6–10.9%) and 19.2% (51/265, CI 14.7–24.5%) developed early treatment failure (ETF) and late treatment failure (LTF) respectively. Among 58 patients with severe malaria, 14 (24.1%) acquired infection in regions where artemisinin resistance has been documented including Binh Phuoc (11 patients), Dak Nong (2 patients) and Gia Lai (1 patient). Under treatment with intravenous artesunate, the median (IQR) parasite half-life of 11 patients coming from Binh Phuoc was 3 h (2.3 to 8.3 h), two patients coming from Dak Nong was 2.8 and 5.7 h, and a patient coming from Gia Lai was 6.5 h. Most patients (98.5%, 261/265) recovered completely. Four patients with severe malaria died. Severe malaria was statistically associated with receiving treatment at previous hospitals (P < 0.001), hepatomegaly (P < 0.001) and number of inpatient days (P < 0.001). Having severe malaria was a predictor of ETF (AOR 6.96, CI 2.55–19.02, P < 0.001). No predictor of LTF was identified. Conclusions Plasmodium falciparum remains the prevalent malaria parasite. Despite low mortality rate, severe malaria is not rare and is a significant predictor of ETF. To reduce the risk for ETF, studies are needed to examine the effectiveness of combination therapy including parenteral artesunate and a parenteral partner drug for severe malaria. The study alerts the possibility of drug-resistant malaria in Africa and other areas in Vietnam, which are known as non-endemic areas of anti-malarial drug resistance. A more comprehensive study using molecular technique in these regions is required to completely understand the magnitude of drug-resistant malaria and to design appropriate control strategies.


2015 ◽  
Vol 59 (3) ◽  
pp. 1818-1821 ◽  
Author(s):  
Luicer A. Ingasia ◽  
Hoseah M. Akala ◽  
Mabel O. Imbuga ◽  
Benjamin H. Opot ◽  
Fredrick L. Eyase ◽  
...  

ABSTRACTThe prevalence of a genetic polymorphism(s) at codon 268 in the cytochromebgene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227Plasmodium falciparumparasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Theerayot Kobasa ◽  
Eldin Talundzic ◽  
Rungniran Sug-aram ◽  
Patcharida Boondat ◽  
Ira F. Goldman ◽  
...  

ABSTRACT Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparum kelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.


2018 ◽  
Vol 63 (3) ◽  
Author(s):  
Victor Asua ◽  
Joanna Vinden ◽  
Melissa D. Conrad ◽  
Jennifer Legac ◽  
Simon P. Kigozi ◽  
...  

ABSTRACT The potential spread of antimalarial drug resistance to Africa, in particular for artemisinins and key partner drugs, is a major concern. We surveyed Plasmodium falciparum genetic markers associated with drug sensitivity on 3 occasions at ∼6-month intervals in 2016 and 2017 at 10 sites representing a range of epidemiological settings in Uganda. For putative drug transporters, we found continued evolution toward wild-type sequences associated with increased sensitivity to chloroquine. For pfcrt K76T, by 2017 the prevalence of the wild type was >60% at all sites and >90% at 6 sites. For the pfmdr1 N86Y and D1246Y alleles, wild type prevalence ranged from 80 to 100%. We found low prevalence of K13 propeller domain mutations, which are associated with artemisinin resistance in Asia, but one mutation previously identified in northern Uganda, 675V, was seen in 2.0% of samples, including 5.5% of those from the 3 northernmost sites. Amplification of the pfmdr1 and plasmepsin2 genes, associated elsewhere with decreased sensitivity to lumefantrine and piperaquine, respectively, was seen in <1% of samples. For the antifolate targets pfdhfr and pfdhps, 5 mutations previously associated with resistance were very common, and the pfdhfr 164L and pfdhps 581G mutations associated with higher-level resistance were seen at multiple sites, although prevalence did not clearly increase over time. Overall, changes were consistent with the selective pressure of the national treatment regimen, artemether-lumefantrine, with increased sensitivity to chloroquine, and with poor efficacy of antifolates. Strong evidence for resistance to artemisinins was not seen. Continued surveillance of markers that predict antimalarial drug sensitivity is warranted.


2014 ◽  
Vol 59 (1) ◽  
pp. 730-733 ◽  
Author(s):  
Jean Popovici ◽  
Sokheng Kao ◽  
Leanghor Eal ◽  
Sophalai Bin ◽  
Saorin Kim ◽  
...  

ABSTRACTPolymorphism in the ortholog gene of thePlasmodium falciparumK13 gene was investigated inPlasmodium vivaxisolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), andP. vivaxK12 polymorphism was reduced compared to that of theP. falciparumK13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism.


2017 ◽  
Vol 114 (13) ◽  
pp. 3515-3520 ◽  
Author(s):  
Ricardo Ataide ◽  
Elizabeth A. Ashley ◽  
Rosanna Powell ◽  
Jo-Anne Chan ◽  
Michael J. Malloy ◽  
...  

Artemisinin-resistant falciparum malaria, defined by a slow-clearance phenotype and the presence of kelch13 mutants, has emerged in the Greater Mekong Subregion. Naturally acquired immunity to malaria clears parasites independent of antimalarial drugs. We hypothesized that between- and within-population variations in host immunity influence parasite clearance after artemisinin treatment and the interpretation of emerging artemisinin resistance. Antibodies specific to 12 Plasmodium falciparum sporozoite and blood-stage antigens were determined in 959 patients (from 11 sites in Southeast Asia) participating in a multinational cohort study assessing parasite clearance half-life (PCt1/2) after artesunate treatment and kelch13 mutations. Linear mixed-effects modeling of pooled individual patient data assessed the association between antibody responses and PCt1/2.P. falciparum antibodies were lowest in areas where the prevalence of kelch13 mutations and slow PCt1/2 were highest [Spearman ρ = −0.90 (95% confidence interval, −0.97, −0.65), and Spearman ρ = −0.94 (95% confidence interval, −0.98, −0.77), respectively]. P. falciparum antibodies were associated with faster PCt1/2 (mean difference in PCt1/2 according to seropositivity, −0.16 to −0.65 h, depending on antigen); antibodies have a greater effect on the clearance of kelch13 mutant compared with wild-type parasites (mean difference in PCt1/2 according to seropositivity, −0.22 to −0.61 h faster in kelch13 mutants compared with wild-type parasites). Naturally acquired immunity accelerates the clearance of artemisinin-resistant parasites in patients with falciparum malaria and may confound the current working definition of artemisinin resistance. Immunity may also play an important role in the emergence and transmission potential of artemisinin-resistant parasites.


2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)


2015 ◽  
Vol 59 (5) ◽  
pp. 2548-2553 ◽  
Author(s):  
Neelima Mishra ◽  
Surendra Kumar Prajapati ◽  
Kamlesh Kaitholia ◽  
Ram Suresh Bharti ◽  
Bina Srivastava ◽  
...  

ABSTRACTMalaria treatment in Southeast Asia is threatened with the emergence of artemisinin-resistantPlasmodium falciparum. Genome association studies have strongly linked a locus onP. falciparumchromosome 13 to artemisinin resistance, and recently, mutations in the kelch13 propeller region (Pfk-13) were strongly linked to resistance. To date, this information has not been shown in Indian samples.Pfk-13mutations were assessed in samples from efficacy studies of artemisinin combination treatments in India. Samples were PCR amplified and sequenced from codon 427 to 727. Out of 384 samples, nonsynonymous mutations in the propeller region were found in four patients from the northeastern states, but their presence did not correlate with ACT treatment failures. This is the first report ofPfk-13point mutations from India. Further phenotyping and genotyping studies are required to assess the status of artemisinin resistance in this region.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Eldin Talundzic ◽  
Yaye D. Ndiaye ◽  
Awa B. Deme ◽  
Christian Olsen ◽  
Dhruviben S. Patel ◽  
...  

ABSTRACT The emergence of Plasmodium falciparum resistance to artemisinin in Southeast Asia threatens malaria control and elimination activities worldwide. Multiple polymorphisms in the P. falciparum kelch gene found in chromosome 13 (Pfk13) have been associated with artemisinin resistance. Surveillance of potential drug resistance loci within a population that may emerge under increasing drug pressure is an important public health activity. In this context, P. falciparum infections from an observational surveillance study in Senegal were genotyped using targeted amplicon deep sequencing (TADS) for Pfk13 polymorphisms. The results were compared to previously reported Pfk13 polymorphisms from around the world. A total of 22 Pfk13 propeller domain polymorphisms were identified in this study, of which 12 have previously not been reported. Interestingly, of the 10 polymorphisms identified in the present study that were also previously reported, all had a different amino acid substitution at these codon positions. Most of the polymorphisms were present at low frequencies and were confined to single isolates, suggesting they are likely transient polymorphisms that are part of naturally evolving parasite populations. The results of this study underscore the need to identify potential drug resistance loci existing within a population, which may emerge under increasing drug pressure.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Stella M. Chenet ◽  
Sheila Akinyi Okoth ◽  
Julia Kelley ◽  
Naomi Lucchi ◽  
Curtis S. Huber ◽  
...  

ABSTRACT In Suriname, an artesunate monotherapy therapeutic efficacy trial was recently conducted to evaluate partial artemisinin resistance emerging in Plasmodium falciparum. We genotyped the PfK13 propeller domain of P. falciparum in 40 samples as well as other mutations proposed to be associated with artemisinin-resistant mutants. We did not find any mutations previously associated with artemisinin resistance in Southeast Asia, but we found fixed resistance mutations for chloroquine (CQ) and sulfadoxine-pyrimethamine. Additionally, the PfCRT C350R mutation, associated with reversal of CQ resistance and piperaquine-selective pressure, was present in 62% of the samples. Our results from neutral microsatellite data also confirmed a high parasite gene flow in the Guiana Shield. Although recruiting participants for therapeutic efficacy studies is challenging in areas where malaria endemicity is very low due to the low number of malaria cases reported, conducting these studies along with molecular surveillance remains essential for the monitoring of artemisinin-resistant alleles and for the characterization of the population structure of P. falciparum in areas targeted for malaria elimination.


Sign in / Sign up

Export Citation Format

Share Document