scholarly journals In VitroActivity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin againstPseudomonas aeruginosa

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Tomefa E. Asempa ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTRelebactam is a novel class A/C β-lactamase inhibitor that restores imipenemin vitroactivity against multidrug-resistant and carbapenem-nonsusceptiblePseudomonas aeruginosa. Time-kill analyses were performed to evaluate the potential role of imipenem-relebactam in combination with amikacin or colistin againstP. aeruginosa. Ten clinicalP. aeruginosaisolates (9 imipenem nonsusceptible) with imipenem-relebactam MICs ranging from 1/4 to 8/4 μg/ml were included. The isolates had varied susceptibilities to imipenem (1 to 32 μg/ml), amikacin (4 to 128 μg/ml), and colistin (0.5 to 1 μg/ml). Duplicate 24-h time-kill studies were conducted using the average steady-state concentrations (Cssavg) observed after the administration of imipenem-relebactam at 500 mg/250 mg every 6 hours (q6h) alone and in combination with theCssavgof 25 mg/kg of body weight/day amikacin and 360 mg/day colistin in humans. Imipenem-relebactam alone resulted in 24-h bacterial densities of −2.93 ± 0.38, −1.67 ± 0.29, +0.38 ± 0.96, and +0.15 ± 0.65 log10CFU/ml at imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. No synergy was demonstrated against the single imipenem-susceptible isolate. Against the imipenem-nonsusceptible isolates (n = 9), imipenem-relebactam combined with amikacin resulted in synergy (−2.61 ± 1.50 log10CFU/ml) against all amikacin-susceptible isolates and in two of three amikacin-intermediate (i.e., MIC, 32 μg/ml) isolates (−2.06 ± 0.19 log10CFU/ml). Synergy with amikacin was not observed when the amikacin MIC was >32 μg/ml. Imipenem-relebactam combined with colistin demonstrated synergy in eight out of the nine imipenem-resistant isolates (−3.17 ± 1.00 log10CFU/ml). Against these 10 P. aeruginosaisolates, imipenem-relebactam combined with either amikacin or colistin resulted in synergistic activity against the majority of strains. Further studies evaluating combination therapy with imipenem-relebactam are warranted.

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Anna Olsson ◽  
Pikkei Wistrand-Yuen ◽  
Elisabet I. Nielsen ◽  
Lena E. Friberg ◽  
Linus Sandegren ◽  
...  

ABSTRACT Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal β-lactams, ciprofloxacin, and amikacin. Genes encoding β-lactamases (e.g., blaPAO and blaOXA-50) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Tomefa E. Asempa ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACT Pseudomonas aeruginosa, a frequent pathogen in the intensive care unit (ICU), has the propensity to develop antibiotic resistance. In particular, carbapenem-nonsusceptible (NS) P. aeruginosa poses tremendous challenges, and new antibiotics will be needed to treat this phenotype. Here we determine carbapenem nonsusceptibility rates for contemporary P. aeruginosa isolates from U.S. ICUs and in vitro activities of new β-lactam combination agents. Between July 2017 and June 2018, consecutive nonduplicate P. aeruginosa isolates from blood and respiratory tract sources were recovered from patients admitted to the ICUs of 36 geographically diverse U.S. hospitals. Antimicrobial susceptibility to the following antipseudomonal agents was tested: ceftazidime, imipenem, meropenem, ceftazidime-avibactam, and imipenem-relebactam (an investigational β-lactam/β-lactamase inhibitor). MICs and susceptibility rates were measured using Clinical and Laboratory Standards Institute reference broth microdilution methodology. Among the 538 consecutive ICU P. aeruginosa isolates collected, carbapenem nonsusceptibility was observed for 35% of the isolates and was more common among respiratory tract versus bloodstream specimens. Susceptibility rates, MIC50 values, and MIC90 values were as follows: ceftazidime-avibactam, 92.8%, 2 μg/ml, and 8 μg/ml; imipenem-relebactam, 91.5%, 0.25 μg/ml, and 2 μg/ml; ceftazidime, 77.1%, 4 μg/ml, and 64 μg/ml; meropenem, 72.7%, 1 μg/ml, and 16 μg/ml; imipenem, 67.1%, 2 μg/ml, and 16 μg/ml. Most (>75%) of the carbapenem-NS isolates were susceptible to ceftazidime-avibactam and imipenem-relebactam. In these U.S. hospital ICUs, carbapenem-NS P. aeruginosa isolates from respiratory sources were frequently observed. Novel β-lactam combination agents appear to retain active in vitro susceptibility profiles against these isolates and may play a role in the treatment of infections caused by carbapenem-NS P. aeruginosa strains.


2012 ◽  
Vol 56 (3) ◽  
pp. 1606-1608 ◽  
Author(s):  
Premavathy Levasseur ◽  
Anne-Marie Girard ◽  
Monique Claudon ◽  
Herman Goossens ◽  
Michael T. Black ◽  
...  

ABSTRACTThe β-lactamase inhibitor avibactam (NXL104) displays potent inhibition of both class A and C enzymes. Thein vitroantibacterial activity of the combination ceftazidime-avibactam was evaluated against a clinical panel ofPseudomonas aeruginosaisolates. Avibactam offered efficient protection from hydrolysis since 94% of isolates were susceptible to ceftazidime when combined with 4 μg/ml avibactam, compared with 65% susceptible to ceftazidime alone. Ceftazidime-avibactam also demonstrated better antipseudomonal activity than imipenem (82% susceptibility), a common reference treatment.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Thea Brennan-Krohn ◽  
Alejandro Pironti ◽  
James E. Kirby

ABSTRACTResistance to colistin, a polypeptide drug used as an agent of last resort for the treatment of infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria, including carbapenem-resistantEnterobacteriaceae(CRE), severely limits treatment options and may even transform an XDR organism into one that is pan-resistant. We investigated the synergistic activity of colistin in combination with 19 antibiotics against a collection of 20 colistin-resistantEnterobacteriaceaeisolates, 15 of which were also CRE. All combinations were tested against all strains using an inkjet printer-assisted digital dispensing checkerboard array, and the activities of those that demonstrated synergy by this method were evaluated against a single isolate in a time-kill synergy study. Eighteen of 19 combinations demonstrated synergy against two or more isolates, and the 4 most highly synergistic combinations (colistin combined with linezolid, rifampin, azithromycin, and fusidic acid) were synergistic against ≥90% of strains. Sixteen of 18 combinations (88.9%) that were synergistic in the checkerboard array were also synergistic in a time-kill study. Our findings demonstrate that colistin in combination with a range of antibiotics, particularly protein and RNA synthesis inhibitors, exhibits synergy against colistin-resistant strains, suggesting that colistin may exert a subinhibitory permeabilizing effect on the Gram-negative bacterial outer membrane even in isolates that are resistant to it. These findings suggest that colistin combination therapy may have promise as a treatment approach for patients infected with colistin-resistant XDR Gram-negative pathogens.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 885
Author(s):  
Soraya Herrera-Espejo ◽  
Tania Cebrero-Cangueiro ◽  
Gema Labrador-Herrera ◽  
Jerónimo Pachón ◽  
María Eugenia Pachón-Ibáñez ◽  
...  

Multidrug-resistant (MDR) Pseudomonas aeruginosa is a public health problem causing both community and hospital-acquired infections, and thus the development of new therapies for these infections is critical. The objective of this study was to analyze in vitro the activity of pentamidine as adjuvant in combinations to antibiotics against seven clinical P. aeruginosa strains. The Minimum Inhibitory Concentration (MIC) was determined following standard protocols, and the results were interpreted according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints; however, the gentamicin activity was interpreted according to the Clinical and Laboratory Standards Institute (CLSI) recommendations. The bactericidal in vitro activity was studied at 1×MIC concentrations by time–kill curves, and also performed in three selected strains at 1/2×MIC of pentamidine. All studies were performed in triplicate. The pentamidine MIC range was 400–1600 μg/mL. Four of the strains were MDR, and the other three were resistant to two antibiotic families. The combinations of pentamidine at 1×MIC showed synergistic activity against all the tested strains, except for pentamidine plus colistin. Pentamidine plus imipenem and meropenem were the combinations that showed synergistic activity against the most strains. At 1/2×MIC, pentamidine plus antibiotics were synergistic with all three analyzed strains. In summary, pentamidine in combination with antibiotics showed in vitro synergy against multidrug-resistant P. aeruginosa clinical strains, which suggests its possible use as adjuvant to antibiotics for the therapy of infections from MDR P. aeruginosa.


2011 ◽  
Vol 56 (3) ◽  
pp. 1584-1587 ◽  
Author(s):  
Johanne Blais ◽  
Stacey R. Lewis ◽  
Kevin M. Krause ◽  
Bret M. Benton

ABSTRACTTD-1792 is a new multivalent glycopeptide-cephalosporin antibiotic with potent activity against Gram-positive bacteria. Thein vitroactivity of TD-1792 was tested against 527Staphylococcus aureusisolates, including multidrug-resistant isolates. TD-1792 was highly active against methicillin-susceptibleS. aureus(MIC90, 0.015 μg/ml), methicillin-resistantS. aureus, and heterogeneous vancomycin-intermediateS. aureus(MIC90, 0.03 μg/ml). Time-kill studies demonstrated the potent bactericidal activity of TD-1792 at concentrations of ≤0.12 μg/ml. A postantibiotic effect of >2 h was observed after exposure to TD-1792.


2011 ◽  
Vol 55 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
Phillip J. Bergen ◽  
Alan Forrest ◽  
Jürgen B. Bulitta ◽  
Brian T. Tsuji ◽  
Hanna E. Sidjabat ◽  
...  

ABSTRACTThe use of combination antibiotic therapy may be beneficial against rapidly emerging resistance inPseudomonas aeruginosa. The aim of this study was to systematically investigatein vitrobacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR)P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106and ∼108CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Zhaojun Zheng ◽  
Nagendran Tharmalingam ◽  
Qingzhong Liu ◽  
Elamparithi Jayamani ◽  
Wooseong Kim ◽  
...  

ABSTRACT The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa. The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 μg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 μg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosa in vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document