scholarly journals Cefiderocol Resistance in Acinetobacter baumannii: Roles of β-Lactamases, Siderophore Receptors, and Penicillin Binding Protein 3

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Saquib Malik ◽  
Monica Kaminski ◽  
David Landman ◽  
John Quale

ABSTRACT Cefiderocol is a siderophore cephalosporin active against many multidrug-resistant (MDR) Gram-negative pathogens. We examined the resistance mechanisms in 12 Acinetobacter baumannii strains with cefiderocol MICs ranging from ≤0.03 to >32 μg/ml. Cefiderocol resistance could not be explained by β-lactamase activity. Cefiderocol resistance was associated with reduced expression of the siderophore receptor gene pirA. Mutations involving PBP3 may have contributed to resistance in one strain. Additional studies are needed to assess the role of other siderophore receptors.

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Fanny Huang ◽  
Noelle Fitchett ◽  
Chelsea Razo-Gutierrez ◽  
Casin Le ◽  
Jasmine Martinez ◽  
...  

ABSTRACT Disruption of the histone-like nucleoid structuring protein (H-NS) was shown to affect the ability of Gram-negative bacteria to regulate genes associated with virulence, persistence, stress response, quorum sensing, biosynthesis pathways, and cell adhesion. Here, we used the expression of metallo-β-lactamases (MBLs), known to elicit envelope stress by the accumulation of toxic precursors in the periplasm, to interrogate the role of H-NS in Acinetobacter baumannii, together with other stressors. Using a multidrug-resistant A. baumannii strain, we observed that H-NS plays a role in alleviating the stress triggered by MBL toxic precursors and counteracts the effect of DNA-damaging agents, supporting its role in stress response. IMPORTANCE Carbapenem-resistant A. baumannii (CRAB) is recognized as one of the most threatening Gram-negative bacilli. H-NS is known to play a role in controlling the transcription of a variety of different genes, including those associated with the stress response, persistence, and virulence. In the present work, we uncovered a link between the role of H-NS in the A. baumannii stress response and its relationship with the envelope stress response and resistance to DNA-damaging agents. Overall, we posit a new role of H-NS, showing that H-NS serves to endure envelope stress and could also be a mechanism that alleviates the stress induced by MBL expression in A. baumannii. This could be an evolutionary advantage to further resist the action of carbapenems.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katie N. Kang ◽  
Misha I. Kazi ◽  
Jacob Biboy ◽  
Joe Gray ◽  
Hannah Bovermann ◽  
...  

ABSTRACT Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several Acinetobacter baumannii clinical isolates produced LOS− colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS− A. baumannii, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS− A. baumannii. PBP1A contributes to proper cell division in A. baumannii, and its absence induced cell chaining. Only isolates producing three or more septa supported selection of colistin-resistant LOS− A. baumannii. PBP1A was enriched at the midcell, where the divisome complex facilitates daughter cell formation, and its localization was dependent on glycosyltransferase activity. Transposon mutagenesis showed that genes encoding two putative ld-transpeptidases (LdtJ and LdtK) became essential in the PBP1A mutant. Both LdtJ and LdtK were required for selection of LOS− A. baumannii, but each had distinct enzymatic activities in the cell. Together, these findings demonstrate that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity remodel the cell envelope to support selection of colistin-resistant LOS− A. baumannii. IMPORTANCE The increasing prevalence of antibiotic treatment failure associated with Gram-negative bacterial infections highlights an urgent need to develop new alternative therapeutic strategies. The last-line antimicrobial colistin (polymyxin E) targets the ubiquitous outer membrane lipopolysaccharide (LPS)/LOS membrane anchor, lipid A, which is essential for viability of most diderms. However, several LOS− Acinetobacter baumannii clinical isolates were recovered after colistin selection, suggesting a conserved resistance mechanism. Here, we characterized a role for penicillin-binding protein 1A in A. baumannii septation and intrinsic β-lactam susceptibility. We also showed that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity support isolation of colistin-resistant LOS− A. baumannii.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2020 ◽  
Vol 202 (12) ◽  
Author(s):  
María Pérez-Varela ◽  
Aimee R. P. Tierney ◽  
Ju-Sim Kim ◽  
Andrés Vázquez-Torres ◽  
Philip Rather

ABSTRACT In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model. IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.


2014 ◽  
Vol 58 (7) ◽  
pp. 3934-3941 ◽  
Author(s):  
Hansjürg Engel ◽  
Moana Mika ◽  
Dalia Denapaite ◽  
Regine Hakenbeck ◽  
Kathrin Mühlemann ◽  
...  

ABSTRACTHeteroresistance to penicillin inStreptococcus pneumoniaeis the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain23F2349in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found thatpbp2x, but notpbp2borpbp1aalone, conferred heteroresistance to R6. However, a change ofpbp2xexpression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP onciaRdisruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinitypbp2xundergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded bypstS,phoU,pstB, andpstCin these highly resistant subpopulations. In conclusion, the presence of low-affinitypbp2xenables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Anthony D. Kang ◽  
Kenneth P. Smith ◽  
Anders H. Berg ◽  
Katherine A. Truelson ◽  
George M. Eliopoulos ◽  
...  

ABSTRACT Apramycin, an aminocyclitol aminoglycoside, was rapidly bactericidal against Acinetobacter baumannii . In a neutropenic murine thigh infection model, treatment-associated A. baumannii CFU reductions of >4 log 10 per thigh were observed for all exposures for which area under the curve (AUC)/MIC ratio was >50 and maximum concentration of drug in serum ( C max )/MIC was ≈10 or higher. Based on these findings, we suggest that apramycin deserves further preclinical exploration as a repurposed therapeutic for multidrug-resistant Gram-negative pathogens, including A. baumannii .


2016 ◽  
Vol 60 (5) ◽  
pp. 2671-2679 ◽  
Author(s):  
Mya Thandar ◽  
Rolf Lood ◽  
Benjamin Y. Winer ◽  
Douglas R. Deutsch ◽  
Chad W. Euler ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistantA. baumanniiclones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to killA. baumannii(>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C(>5-log kill). Both P307 and P307SQ-8Cshowed highin vitroactivity againstA. baumanniiin biofilms. Moreover, P307SQ-8Cexhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model ofA. baumanniiskin infection, P307SQ-8Creduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2016 ◽  
Vol 113 (41) ◽  
pp. E6228-E6237 ◽  
Author(s):  
Joseph M. Boll ◽  
Alexander A. Crofts ◽  
Katharina Peters ◽  
Vincent Cattoir ◽  
Waldemar Vollmer ◽  
...  

The Gram-negative bacterial outer membrane fortifies the cell against environmental toxins including antibiotics. Unique glycolipids called lipopolysaccharide/lipooligosaccharide (LPS/LOS) are enriched in the cell-surface monolayer of the outer membrane and promote antimicrobial resistance. Colistin, which targets the lipid A domain of LPS/LOS to lyse the cell, is the last-line treatment for multidrug-resistant Gram-negative infections. Lipid A is essential for the survival of most Gram-negative bacteria, but colistin-resistantAcinetobacter baumanniilacking lipid A were isolated after colistin exposure. Previously, strain ATCC 19606 was the onlyA. baumanniistrain demonstrated to subsist without lipid A. Here, we show that otherA. baumanniistrains can also survive without lipid A, but some cannot, affording a unique model to study endotoxin essentiality. We assessed the capacity of 15 clinicalA. baumanniiisolates including 9 recent clinical isolates to develop colistin resistance through inactivation of the lipid A biosynthetic pathway, the products of which assemble the LOS precursor. Our investigation determined that expression of the well-conserved penicillin-binding protein (PBP) 1A, prevented LOS-deficient colony isolation. The glycosyltransferase activity of PBP1A, which aids in the polymerization of the peptidoglycan cell wall, was lethal to LOS-deficientA. baumannii. Global transcriptomic analysis of a PBP1A-deficient mutant and four LOS-deficientA. baumanniistrains showed a concomitant increase in transcription of lipoproteins and their transporters. Examination of the LOS-deficientA. baumanniicell surface demonstrated that specific lipoproteins were overexpressed and decorated the cell surface, potentially compensating for LOS removal. This work expands our knowledge of lipid A essentiality and elucidates a drug resistance mechanism.


2014 ◽  
Vol 82 (9) ◽  
pp. 3910-3918 ◽  
Author(s):  
Patrick M. Ketter ◽  
M. Neal Guentzel ◽  
Beverly Schaffer ◽  
Maryanne Herzig ◽  
Xiaowu Wu ◽  
...  

ABSTRACTMultidrug-resistantAcinetobacter baumanniiis among the most prevalent bacterial pathogens associated with trauma-related wound and bloodstream infections. Although septic shock and disseminated intravascular coagulation have been reported following fulminantA. baumanniisepsis, little is known about the protective host immune response to this pathogen. In this study, we examined the role of PTX3, a soluble pattern recognition receptor with reported antimicrobial properties and stored within neutrophil granules. PTX3 production by murine J774a.1 macrophages was assessed following challenge withA. baumanniistrains ATCC 19606 and clinical isolates (CI) 77, 78, 79, 80, and 86. Interestingly, only CI strains 79, 80, and 86 induced PTX3 synthesis in murine J774a.1 macrophages, with greatest production observed following CI 79 and 86 challenge. Subsequently, C57BL/6 mice were challenged intraperitoneally with CI 77 and 79 to assess the role of PTX3in vivo.A. baumanniistrain CI 79 exhibited significantly (P< 0.0005) increased mortality, with an approximate 50% lethal dose (LD50) of 105CFU, while an equivalent dose of CI 77 exhibited no mortality. Plasma leukocyte chemokines (KC, MCP-1, and RANTES) and myeloperoxidase activity were also significantly elevated following challenge with CI 79, indicating neutrophil recruitment/activation associated with significant elevation in serum PTX3 levels. Furthermore, 10-fold-greater PTX3 levels were observed in mouse serum 12 h postchallenge, comparing CI 79 to CI 77 (1,561 ng/ml versus 145 ng/ml), with concomitant severe pathology (liver and spleen) and coagulopathy. Together, these results suggest that elevation of PTX3 is associated with fulminant disease duringA. baumanniisepsis.


Sign in / Sign up

Export Citation Format

Share Document