scholarly journals Population Pharmacokinetics of Doxycycline in Children

2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Elizabeth J. Thompson ◽  
Huali Wu ◽  
Chiara Melloni ◽  
Stephen Balevic ◽  
Janice E. Sullivan ◽  
...  

ABSTRACT Doxycycline is a tetracycline-class antimicrobial labeled by the U.S. Food and Drug Administration for children >8 years of age for many common childhood infections. Doxycycline is not labeled for children ≤8 years of age, due to the association between tetracycline-class antibiotics and tooth staining, although doxycycline may be used off-label under severe conditions. Accordingly, there is a paucity of pharmacokinetic (PK) data to guide dosing in children 8 years and younger. We leveraged opportunistically collected plasma samples after intravenous (i.v.) and oral doxycycline doses received per standard of care to characterize the PK of doxycycline in children of different ages and evaluated the effect of obesity and fasting status on PK parameters. We developed a population PK model of doxycycline using data collected from 47 patients 0 to 18 years of age, including 14 participants ≤8 years. We developed a 1-compartment PK model and found doxycycline clearance to be 3.32 liters/h/70 kg of body weight and volume to be 96.8 liters/70 kg for all patients, comparable to values reported in adults. We estimated a bioavailability of 89.6%, also consistent with adult data. Allometrically scaled clearance and volume of distribution did not differ between children 2 to ≤8 years of age and children >8 to ≤18 years of age, suggesting that younger children may be given the same per-kilogram dosing. Obesity status and fasting status were not selected for inclusion in the final model. Additional doxycycline PK samples collected in future studies may be used to improve model performance and maximize its clinical value.

2021 ◽  
Vol 11 (15) ◽  
pp. 6918
Author(s):  
Chidubem Iddianozie ◽  
Gavin McArdle

The effectiveness of a machine learning model is impacted by the data representation used. Consequently, it is crucial to investigate robust representations for efficient machine learning methods. In this paper, we explore the link between data representations and model performance for inference tasks on spatial networks. We argue that representations which explicitly encode the relations between spatial entities would improve model performance. Specifically, we consider homogeneous and heterogeneous representations of spatial networks. We recognise that the expressive nature of the heterogeneous representation may benefit spatial networks and could improve model performance on certain tasks. Thus, we carry out an empirical study using Graph Neural Network models for two inference tasks on spatial networks. Our results demonstrate that heterogeneous representations improves model performance for down-stream inference tasks on spatial networks.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanhe Tian ◽  
Wang Shen ◽  
Yan Song ◽  
Fei Xia ◽  
Min He ◽  
...  

Abstract Background Biomedical named entity recognition (BioNER) is an important task for understanding biomedical texts, which can be challenging due to the lack of large-scale labeled training data and domain knowledge. To address the challenge, in addition to using powerful encoders (e.g., biLSTM and BioBERT), one possible method is to leverage extra knowledge that is easy to obtain. Previous studies have shown that auto-processed syntactic information can be a useful resource to improve model performance, but their approaches are limited to directly concatenating the embeddings of syntactic information to the input word embeddings. Therefore, such syntactic information is leveraged in an inflexible way, where inaccurate one may hurt model performance. Results In this paper, we propose BioKMNER, a BioNER model for biomedical texts with key-value memory networks (KVMN) to incorporate auto-processed syntactic information. We evaluate BioKMNER on six English biomedical datasets, where our method with KVMN outperforms the strong baseline method, namely, BioBERT, from the previous study on all datasets. Specifically, the F1 scores of our best performing model are 85.29% on BC2GM, 77.83% on JNLPBA, 94.22% on BC5CDR-chemical, 90.08% on NCBI-disease, 89.24% on LINNAEUS, and 76.33% on Species-800, where state-of-the-art performance is obtained on four of them (i.e., BC2GM, BC5CDR-chemical, NCBI-disease, and Species-800). Conclusion The experimental results on six English benchmark datasets demonstrate that auto-processed syntactic information can be a useful resource for BioNER and our method with KVMN can appropriately leverage such information to improve model performance.


2021 ◽  
Vol 268 ◽  
pp. 115951
Author(s):  
Xiangyu Xu ◽  
Ning Qin ◽  
Zhenchun Yang ◽  
Yunwei Liu ◽  
Suzhen Cao ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Timothy A Ebert ◽  
Michael E Rogers

Abstract Candidatus Liberibacter asiaticus Jagoueix, Bové, and Garnier (Rhizobiales: Rhizobiaceae) is transmitted by the psyllid Diaphorina citri Kuwayama and putatively causes Huanglongbing disease in citrus. Huanglongbing has reduced yields by 68% relative to pre-disease yields in Florida. Disease management is partly through vector control. Understanding vector biology is essential in this endeavor. Our goal was to document differences in probing behavior linked to sex. Based on both a literature review and our results, we conclude that there is either no effect of sex or that identifying such an effect requires a sample size at least four times larger than standard methodologies. Including both color and sex in statistical models did not improve model performance. Both sex and color are correlated with body size, and body size has not been considered in previous studies on sex in D. citri in terms of probing behavior. An effect of body size was found wherein larger psyllids took longer to reach ingestion behaviors and larger individuals spent more time-ingesting phloem, but these relationships explained little of the variability in these data. We suggest that the effects of sex can be ignored when running EPG experiments on healthy psyllids.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Michael J. Smith ◽  
Daniel Gonzalez ◽  
Jennifer L. Goldman ◽  
Ram Yogev ◽  
Janice E. Sullivan ◽  
...  

ABSTRACT Although obesity is prevalent among children in the United States, pharmacokinetic (PK) data for obese children are limited. Clindamycin is a commonly used antibiotic that may require dose adjustment in obese children due to its lipophilic properties. We performed a clindamycin population PK analysis using data from three separate trials. A total of 420 samples from 220 children, 76 of whom had a body mass index greater than or equal to the 95th percentile for age, were included in the analysis. Compared to other metrics, total body weight (TBW) was the most robust measure of body size. The final model included TBW and a sigmoidal maturation relationship between postmenstrual age (PMA) and clearance (CL): CL (liters/hour) = 13.8 × (TBW/70)0.75 × [PMA2.83/(39.52.83+PMA2.83)]; volume of distribution (V) was associated with TBW, albumin (ALB), and alpha-1 acid glycoprotein (AAG): V (liters) = 63.6 × (TBW/70) × (ALB/3.3)−0.83 × (AAG/2.4)−0.25. After accounting for differences in TBW, obesity status did not explain additional interindividual variability in model parameters. Our findings support TBW-based dosing for obese and nonobese children.


2021 ◽  
Author(s):  
Katy Burrows ◽  
David Milledge ◽  
Richard J. Walters ◽  
Dino Bellugi

Abstract. Information on the spatial distribution of triggered landslides following an earthquake is invaluable to emergency responders. Manual mapping using optical satellite imagery, which is currently the most common method of generating this landslide information, is extremely time consuming and can be disrupted by cloud-cover. Empirical models of landslide probability and landslide detection with satellite radar data are two alternative methods of generating information on triggered landslides that overcome these limitations. Here we assess the potential of a combined approach, in which we generate an empirical model of the landslides using data available immediately following the earthquake using the Random Forests technique, and then progressively add landslide indicators derived from Sentinel-1 and ALOS-2 satellite radar data to this model in the order they were acquired following the earthquake. We use three large case study earthquakes and test two model types: first, a model that is trained on a small part of the study area and used to predict the remainder of the landslides, and second a preliminary "global" model that is trained on the landslide data from two earthquakes and used to predict the third. We assess model performance using receiver operating characteristic analysis and r2, and find that the addition of the radar data can considerably improve model performance and robustness within two weeks of the earthquake. In particular, we observed a large improvement in model performance when the first ALOS-2 image was added and recommend that these data or similar data from other L-band radar satellites be routinely incorporated in future empirical models.


2021 ◽  
Author(s):  
Roshan A. Karunamuni ◽  
Minh-Phuong Huynh-Le ◽  
Chun C. Fan ◽  
Wesley Thompson ◽  
Asona Lui ◽  
...  

AbstractWe previously developed an African-ancestry-specific polygenic hazard score (PHS46+African) that substantially improved prostate cancer risk stratification in men with African ancestry. The model consists of 46 SNPs identified in Europeans and 3 SNPs from 8q24 shown to improve model performance in Africans. Herein, we used principal component (PC) analysis to uncover subpopulations of men with African ancestry for whom the utility of PHS46+African may differ. Genotypic data were obtained from PRACTICAL consortium for 6,253 men with African genetic ancestry. Genetic variation in a window spanning 3 African-specific 8q24 SNPs was estimated using 93 PCs. A Cox proportional hazards framework was used to identify the pair of PCs most strongly associated with performance of PHS46+African. A calibration factor (CF) was formulated using estimated Cox coefficients to quantify the extent to which the performance of PHS46+African varies with PC. CF of PHS46+African was strongly associated with the first and twentieth PCs. Predicted CF ranged from 0.41 to 2.94, suggesting that PHS46+African may be up to 7 times more beneficial to some African men than others. The explained relative risk for PHS46+African varied from 3.6% to 9.9% for individuals with low and high CF values, respectively. By cross-referencing our dataset with 1000 Genomes, we identified statistically significant associations between continental and calibration groupings. In conclusion, we identified PCs within 8q24 SNP window that were strongly associated with performance of PHS46+African. Further research to improve clinical utility of polygenic risk scores (or models) is needed to improve health outcomes for men of African ancestry


1980 ◽  
Vol 26 (94) ◽  
pp. 53-63
Author(s):  
Arthur Judson ◽  
Charles F. Leaf ◽  
Glen E. Brink

AbstractA simulation process model is developed for rating avalanche danger for twelve east-facing avalanche paths loaded by westerly winds. The model simulates layer age and densification, snow depth, snow transport and deposition, formation of melt crusts, snow temperatures, temperature gradient metamorphism, and avalanche danger on a 6 h basis. Conditioned on avalanches alone, the model predicted avalanche potential on 86% of the 175 avalanche days during an eight-year period. It indicated avalanche potential 50% of the time on non-avalanche days. A sensitivity analysis is under way to improve model performance, and simulation of danger from additional avalanche samples is planned.


2021 ◽  
Vol 21 (10) ◽  
pp. 2993-3014
Author(s):  
Katy Burrows ◽  
David Milledge ◽  
Richard J. Walters ◽  
Dino Bellugi

Abstract. Information on the spatial distribution of triggered landslides following an earthquake is invaluable to emergency responders. Manual mapping using optical satellite imagery, which is currently the most common method of generating this landslide information, is extremely time consuming and can be disrupted by cloud cover. Empirical models of landslide probability and landslide detection with satellite radar data are two alternative methods of generating information on triggered landslides that overcome these limitations. Here we assess the potential of a combined approach, in which we generate an empirical model of the landslides using data available immediately following the earthquake using the random forest technique and then progressively add landslide indicators derived from Sentinel-1 and ALOS-2 satellite radar data to this model in the order they were acquired following the earthquake. We use three large case study earthquakes and test two model types: first, a model that is trained on a small part of the study area and used to predict the remainder of the landslides and, second, a preliminary global model that is trained on the landslide data from two earthquakes and used to predict the third. We assess model performance using receiver operating characteristic analysis and r2, and we find that the addition of the radar data can considerably improve model performance and robustness within 2 weeks of the earthquake. In particular, we observed a large improvement in model performance when the first ALOS-2 image was added and recommend that these data or similar data from other L-band radar satellites be routinely incorporated in future empirical models.


Sign in / Sign up

Export Citation Format

Share Document