scholarly journals Determination of Pharmacodynamic Target Exposures for Rezafungin against Candida tropicalis and Candida dubliniensis in the Neutropenic Mouse Disseminated Candidiasis Model

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
David R. Andes

ABSTRACT Rezafungin (CD101) is a novel echinocandin under development for once-weekly intravenous (i.v.) dosing. We evaluated the pharmacodynamics (PD) of rezafungin against 4 Candida tropicalis and 4 Candida dubliniensis strains, using the neutropenic mouse invasive candidiasis model. The area under the concentration-time curve (AUC)/MIC was a robust predictor of efficacy (R2 = 0.93 and 0.72, respectively). The stasis free-drug 24-h AUC/MIC target exposure for the group ranged from 3 to 25, whereas the 1-log-kill free-drug 24-h AUC/MIC target exposure ranged from 4.3 to 62. These values are similar to those found in previous rezafungin PD studies with other Candida spp. Based on recent surveillance susceptibility data, AUC/MIC targets are likely to be exceeded for >99% of C. tropicalis and C. dubliniensis isolates with the previously studied human dose of 400 mg i.v. once weekly.

2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
David R. Andes

ABSTRACT Rezafungin (CD101) is a novel echinocandin under development for once-weekly intravenous (i.v.) dosing. We evaluated the pharmacodynamics (PD) of rezafungin against 4 Candida auris strains, using the neutropenic mouse invasive candidiasis model. The area under the concentration-time curve (AUC)/MIC was a robust predictor of efficacy (R2 = 0.76). The stasis free-drug 24-h AUC/MIC target exposure for the group was 1.88, whereas the 1-log-kill free-drug 24-h AUC/MIC target exposure was 5.77. These values are very similar to those in previous rezafungin PD studies with other Candida spp. Based on recent surveillance susceptibility data, AUC/MIC targets are likely to be exceeded for >90% of C. auris isolates with the previously studied human dose of 400 mg administered i.v. once weekly.


2011 ◽  
Vol 55 (5) ◽  
pp. 2478-2480 ◽  
Author(s):  
Brad Moriyama ◽  
Marisa Ditullio ◽  
Eleanor Wilson ◽  
Stacey A. Henning ◽  
Scott R. Penzak ◽  
...  

ABSTRACTCandidaempyema is a serious complication of disseminated candidiasis. However, little is known about the intrapleural pharmacokinetics of echinocandins. We report the penetration of anidulafungin into the pleural fluid of a patient withCandida tropicalisempyema. The anidulafungin ratio for the area under the concentration-time curve from 0 h to the last measurement between pleural fluid and serum values was only 0.125 (12.5%), with pleural fluid concentrations ranging between 0.67 and 0.88 μg/ml.


2015 ◽  
Vol 59 (12) ◽  
pp. 7833-7836 ◽  
Author(s):  
A. Lepak ◽  
K. Marchillo ◽  
J. VanHecker ◽  
D. Andes

ABSTRACTDalbavancin is a novel lipoglycopeptide with activity againstStaphylococcus aureus, including glycopeptide-resistant isolates. Thein vivoinvestigation reported here tested the effects of this antibiotic against sevenS. aureusisolates with higher MICs, including several vancomycin-intermediate strains. Results of 1-log kill and 2-log kill were achieved against seven and six of the isolates, respectively. The mean free-drug area under the concentration-time curve (fAUC)/MIC values for net stasis, 1-log kill, and 2-log kill were 27.1, 53.3, and 111.1, respectively.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACT We determined in vivo efficacy and target PK/PD exposures of antofloxacin against Streptococcus pneumoniae and Staphylococcus aureus in the murine pneumonia model. The mean plasma free drug area under the concentration-time curve/MIC (fAUC/MIC) targets associated with stasis and 1-log10 and 2-log10 kill effects were 8.93, 19.2, and 48.1, respectively, for S. pneumoniae, whereas they were 30.5, 55.4, and 115.8, respectively, for S. aureus. The fAUC/MIC targets in murine lung epithelial lining fluids (ELF) for the same endpoints were nearly 2-fold higher than those in plasma.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James M. Kidd ◽  
Kamilia Abdelraouf ◽  
Tomefa E. Asempa ◽  
Romney M. Humphries ◽  
David P. Nicolau

ABSTRACT The Clinical and Laboratory Standards Institute (CLSI) daptomycin MIC susceptibility breakpoint for the treatment of enterococcal infections is ≤4 μg/ml. However, patients receiving daptomycin for the treatment of infections caused by enterococci with MICs of ≤4 μg/ml may experience treatment failures. We assessed the pharmacodynamics of daptomycin against enterococci in a neutropenic murine thigh infection model and determined the exposures necessary for bacteriostasis and a 1-log10-CFU reduction of Enterococcus faecalis and Enterococcus faecium. We further characterized daptomycin efficacy at clinically achievable exposures. Six E. faecium and 6 E. faecalis isolates (daptomycin MICs, 0.5 to 32 μg/ml) were studied. Daptomycin was administered at various doses over 24 h to achieve area under the free drug concentration-time curve-to-MIC ratios (fAUC0–24/MIC) ranging from 1 to 148. Daptomycin regimens that simulate mean human exposures following doses of 6, 8, and 10 mg/kg of body weight/day were also studied. Efficacy was assessed by the differences in the number of log10 CFU per thigh at 24 h. The Hill equation was used to estimate the fAUC0–24/MIC required to achieve bacteriostasis and a 1-log10-CFU reduction. For E. faecium, a 1-log10-CFU reduction required an fAUC0–24/MIC of 12.9 (R2 = 0.71). For E. faecalis, a 1-log10-CFU reduction was not achieved, while the fAUC0–24/MIC required for stasis was 7.2 (R2 = 0.8). With a human-simulated regimen of 6 mg/kg/day, a 1-log10-CFU reduction was observed in 3/3 E. faecium isolates with MICs of <4 μg/ml and 0/3 E. faecium isolates with MICs of ≥4 μg/ml; however, a 1-log10-CFU reduction was not achieved for any of the 6 E. faecalis isolates. These results, alongside clinical data, prompt a reevaluation of the current breakpoint.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Elizabeth A. Lakota ◽  
Justin C. Bader ◽  
Voon Ong ◽  
Ken Bartizal ◽  
Lynn Miesel ◽  
...  

ABSTRACT CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (∼133 h in humans, ∼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0–168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.


2013 ◽  
Vol 57 (11) ◽  
pp. 5714-5716 ◽  
Author(s):  
David R. Andes ◽  
Daniel K. Reynolds ◽  
Scott A. Van Wart ◽  
Alexander J. Lepak ◽  
Laura L. Kovanda ◽  
...  

ABSTRACTEchinocandins exhibit concentration-dependent effects onCandidaspecies, and preclinical studies support the administration of large, infrequent doses. The current report examines the pharmacokinetics/pharmacodynamics of two multicenter, randomized trials of micafungin dosing regimens that differed in both dose level and dosing interval. Analysis demonstrates the clinical relevance of the dose level and area under the concentration-time curve (AUC). Better, although not statistically significant (P= 0.056), outcomes were seen with higher maximum concentrations of drug in serum (Cmax) and large, infrequent doses. The results support further clinical investigation of novel micafungin dosing regimens with large doses but less than daily administration. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00666185 and NCT00665639.)


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Vanessa E. Rees ◽  
Rajbharan Yadav ◽  
Kate E. Rogers ◽  
Jürgen B. Bulitta ◽  
Veronika Wirth ◽  
...  

ABSTRACT Hypermutable Pseudomonas aeruginosa organisms are prevalent in chronic respiratory infections and have been associated with reduced lung function in cystic fibrosis (CF); these isolates can become resistant to all antibiotics in monotherapy. This study aimed to evaluate the time course of bacterial killing and resistance of meropenem and ciprofloxacin in combination against hypermutable and nonhypermutable P. aeruginosa. Static concentration time-kill experiments over 72 h assessed meropenem and ciprofloxacin in mono- and combination therapies against PAO1 (nonhypermutable), PAOΔmutS (hypermutable), and hypermutable isolates CW8, CW35, and CW44 obtained from CF patients with chronic respiratory infections. Meropenem (1 or 2 g every 8 h [q8h] as 3-h infusions and 3 g/day as a continuous infusion) and ciprofloxacin (400 mg q8h as 1-h infusions) in monotherapies and combinations were further evaluated in an 8-day hollow-fiber infection model study (HFIM) against CW44. Concentration-time profiles in lung epithelial lining fluid reflecting the pharmacokinetics in CF patients were simulated and counts of total and resistant bacteria determined. All data were analyzed by mechanism-based modeling (MBM). In the HFIM, all monotherapies resulted in rapid regrowth with resistance at 48 h. The maximum daily doses of 6 g meropenem (T>MIC of 80% to 88%) and 1.2 g ciprofloxacin (area under the concentration-time curve over 24 h in the steady state divided by the MIC [AUC/MIC], 176), both given intermittently, in monotherapy failed to suppress regrowth and resulted in substantial emergence of resistance (≥7.6 log10 CFU/ml resistant populations). The combination of these regimens achieved synergistic killing and suppressed resistance. MBM with subpopulation and mechanistic synergy yielded unbiased and precise curve fits. Thus, the combination of 6 g/day meropenem plus ciprofloxacin holds promise for future clinical evaluation against infections by susceptible hypermutable P. aeruginosa.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Kristen L. Bunnell ◽  
Manjunath P. Pai ◽  
Monica Sikka ◽  
Susan C. Bleasdale ◽  
Eric Wenzler ◽  
...  

ABSTRACT A recommended total-body-weight (TBW) dosing strategy for telavancin may not be optimal in obese patients. The primary objective of this study was to characterize and compare the pharmacokinetics (PK) of telavancin across four body size groups: normal to overweight and obese classes I, II, and III. Healthy adult subjects ( n = 32) received a single, weight-stratified, fixed dose of 500 mg ( n = 4), 750 mg ( n = 8), or 1,000 mg ( n = 20) of telavancin. Noncompartmental PK analyses revealed that subjects with a body mass index (BMI) of ≥40 kg/m 2 had a higher volume of distribution (16.24 ± 2.7 liters) than subjects with a BMI of <30 kg/m 2 (11.71 ± 2.6 liters). The observed area under the concentration-time curve from time zero to infinity (AUC 0–∞ ) ranged from 338.1 to 867.3 mg · h/liter, with the lowest exposures being in subjects who received 500 mg. AUC 0–∞ values were similar among obese subjects who received 1,000 mg. A two-compartment population PK model best described the plasma concentration-time profile of telavancin when adjusted body weight (ABW) was included as a predictive covariate. Fixed doses of 750 mg and 1,000 mg had similar target attainment probabilities for efficacy as doses of 10 mg/kg of body weight based on ABW and TBW, respectively. However, the probability of achieving a target area under the concentration-time curve from time zero to 24 h of ≥763 mg · h/liter in association with acute kidney injury was highest (19.7%) with TBW-simulated dosing and lowest (0.4%) at the 750-mg dose. These results suggest that a fixed dose of 750 mg is a safe and effective alternative to telavancin doses based on TBW or ABW for the treatment of obese patients with normal renal function and Staphylococcus aureus infections. (This study has been registered at ClinicalTrials.gov under identifier NCT02753855.)


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Yu-Feng Zhou ◽  
Meng-Ting Tao ◽  
Yu-Zhang He ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACT Antimicrobial resistance among uropathogens has increased the rates of infection-related morbidity and mortality. Antofloxacin is a novel fluoroquinolone with broad-spectrum antibacterial activity against urinary Gram-negative bacilli, such as Escherichia coli. This study monitored the in vivo efficacy of antofloxacin using bioluminescent imaging and determined pharmacokinetic (PK)/pharmacodynamic (PD) targets against E. coli isolates in a neutropenic murine thigh infection model. The PK properties were determined after subcutaneous administration of antofloxacin at 2.5, 10, 40, and 160 mg/kg of body weight. Following thigh infection, the mice were treated with 2-fold-increasing doses of antofloxacin from 2.5 to 80 mg/kg administered every 12 h. Efficacy was assessed by quantitative determination of the bacterial burdens in thigh homogenates and was compared with the bioluminescent density. Antofloxacin demonstrated both static and killing endpoints in relation to the initial burden against all study strains. The PK/PD index area under the concentration-time curve (AUC)/MIC correlated well with efficacy (R 2 = 0.92), and the dose-response relationship was relatively steep, as observed with escalating doses of antofloxacin. The mean free drug AUC/MIC targets necessary to produce net bacterial stasis and 1-log10 and 2-log10 kill for each isolate were 38.7, 66.1, and 147.0 h, respectively. In vivo bioluminescent imaging showed a rapid decrease in the bioluminescent density at free drug AUC/MIC exposures that exceeded the stasis targets. The integration of these PD targets combined with the results of PK studies with humans will be useful in setting optimal dosing regimens for the treatment of urinary tract infections due to E. coli.


Sign in / Sign up

Export Citation Format

Share Document