scholarly journals Antimicrobial Properties of 8-Hydroxyserrulat-14-en-19-oic Acid for Treatment of Implant-Associated Infections

2012 ◽  
Vol 57 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Justyna Nowakowska ◽  
Hans J. Griesser ◽  
Marcus Textor ◽  
Regine Landmann ◽  
Nina Khanna

ABSTRACTTreatment options are limited for implant-associated infections (IAI) that are mainly caused by biofilm-forming staphylococci. We report here on the activity of the serrulatane compound 8-hydroxyserrulat-14-en-19-oic acid (EN4), a diterpene isolated from the Australian plantEremophila neglecta. EN4 elicited antimicrobial activity toward various Gram-positive bacteria but not to Gram-negative bacteria. It showed a similar bactericidal effect against logarithmic-phase, stationary-phase, and adherentStaphylococcus epidermidis, as well as against methicillin-susceptible and methicillin-resistantS. aureuswith MICs of 25 to 50 μg/ml and MBCs of 50 to 100 μg/ml. The bactericidal activity of EN4 was similar againstS. epidermidisand its Δicamutant, which is unable to produce polysaccharide intercellular adhesin-mediated biofilm. In time-kill studies, EN4 exhibited a rapid and concentration-dependent killing of staphylococci, reducing bacterial counts by >3 log10CFU/ml within 5 min at concentrations of >50 μg/ml. Investigation of the mode of action of EN4 revealed membranolytic properties and a general inhibition of macromolecular biosynthesis, suggesting a multitarget activity.In vitro-tested cytotoxicity on eukaryotic cells was time and concentration dependent in the range of the MBCs. EN4 was then tested in a mouse tissue cage model, where it showed neither bactericidal nor cytotoxic effects, indicating an inhibition of its activity. Inhibition assays revealed that this was caused by interactions with albumin. Overall, these findings suggest that, upon structural changes, EN4 might be a promising pharmacophore for the development of new antimicrobials to treat IAI.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2011 ◽  
Vol 56 (3) ◽  
pp. 1584-1587 ◽  
Author(s):  
Johanne Blais ◽  
Stacey R. Lewis ◽  
Kevin M. Krause ◽  
Bret M. Benton

ABSTRACTTD-1792 is a new multivalent glycopeptide-cephalosporin antibiotic with potent activity against Gram-positive bacteria. Thein vitroactivity of TD-1792 was tested against 527Staphylococcus aureusisolates, including multidrug-resistant isolates. TD-1792 was highly active against methicillin-susceptibleS. aureus(MIC90, 0.015 μg/ml), methicillin-resistantS. aureus, and heterogeneous vancomycin-intermediateS. aureus(MIC90, 0.03 μg/ml). Time-kill studies demonstrated the potent bactericidal activity of TD-1792 at concentrations of ≤0.12 μg/ml. A postantibiotic effect of >2 h was observed after exposure to TD-1792.


Author(s):  
Wei Yu ◽  
Yicheng Huang ◽  
Chaoqun Ying ◽  
Yanzi Zhou ◽  
Li Zhang ◽  
...  

Abstract Background The aim of this study was to investigate the mechanism of Listeria monocytogenes (Lm) pathogenicity and resistance. In addition, the effect of existing treatment options against Lm were systematically evaluated. Methods Six Lm isolates were collected and antimicrobial susceptibility testing of 15 antibiotics were done. Subsequently, whole genome sequencing and bioinformatics analysis were performed. Biofilm formation was evaluated by crystal violet staining. Furthermore, the effect of meropenem, linezolid, penicillin, vancomycin, trimethoprim/sulfamethoxazole were determined using the time-kill assay. Results Four sequence types (STs) were identified (ST1, ST3, ST87, ST451). Multi-virulence-locus sequence typing (MVLST) results classified ST87 isolates into cluster. All isolates were resistant to fosfomycin and daptomycin with fosX and mprF. In addition, a total of 80 virulence genes were detected and 72 genes were found in all six isolates. Seven genes associated with haemolysin were found in 26530 and 115423. However, due to lack of one genomic island including virulence genes related to flagellar synthesis, isolate 115423 produced less biofilm than five other isolates. Even all isolates were susceptible to vancomycin, the in vitro time-kill assay showed vancomycin monotherapy resulted in less than 2 log10 CFU/mL compared with the initial count. Trimethoprim/sulfamethoxazole at serum or cerebrospinal fluid concentrations had bactericidal effect against tested Lm strains at 24 h. Conclusions ST87 clone was a typical prevalent ST in clinical Lm isolates in China. Trimethoprim/sulfamethoxazole might be greater potential therapeutic option against Lm infections.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
S. S. Bhagwat ◽  
H. Periasamy ◽  
S. S. Takalkar ◽  
S. R. Palwe ◽  
H. N. Khande ◽  
...  

ABSTRACTWCK 5222 is a combination of cefepime and the high-affinity PBP2-binding β-lactam enhancer zidebactam. The cefepime-zidebactam combination is active against multidrug-resistant Gram-negative bacteria, including carbapenemase-expressingAcinetobacter baumannii. The mechanism of action of the combination involves concurrent multiple penicillin binding protein inhibition, leading to the enhanced bactericidal action of cefepime. The aim of the present study was to assess the impact of the zidebactam-mediated enhancedin vitrobactericidal action in modulating the percentage of the time that the free drug concentration remains above the MIC (percentfT>MIC) for cefepime required for thein vivokilling ofA. baumannii. Cefepime and cefepime-zidebactam MICs were comparable and ranged from 2 to 16 mg/liter for theA. baumanniistrains (n = 5) employed in the study. Time-kill studies revealed the improved killing of these strains by the cefepime-zidebactam combination compared to that by the constituents alone. Employing a neutropenic mouse lung infection model, exposure-response analyses for all theA. baumanniistrains showed that the cefepimefT>MIC required for 1-log10kill was 38.9%. In the presence of a noneffective dose of zidebactam, the cefepimefT>MIC requirement dropped significantly to 15.5%, but it still rendered a 1-log10kill effect. Thus, zidebactam mediated the improvement in cefepime’s bactericidal effect observed in time-kill studies, manifestedin vivothrough the lowering of cefepime’s pharmacodynamic requirement. This is a first-ever study demonstrating a β-lactam enhancer role of zidebactam that helps augment thein vivoactivity of cefepime by reducing the magnitude of its pharmacodynamically relevant exposures againstA. baumannii.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Juan M. Pericàs ◽  
Ruvandhi Nathavitharana ◽  
Cristina Garcia-de-la-Mària ◽  
Carles Falces ◽  
Juan Ambrosioni ◽  
...  

ABSTRACT Optimal treatment options remain unknown for infective endocarditis (IE) caused by penicillin-resistant (PEN-R) viridans group streptococcal (VGS) strains. The aims of this study were to report two cases of highly PEN-R VGS IE, perform a literature review, and evaluate various antibiotic combinations in vitro and in vivo. The following combinations were tested by time-kill studies and in the rabbit experimental endocarditis (EE) model: PEN-gentamicin, ceftriaxone-gentamicin, vancomycin-gentamicin, daptomycin-gentamicin, and daptomycin-ampicillin. Case 1 was caused by Streptococcus parasanguinis (PEN MIC, 4 μg/ml) and was treated with vancomycin plus cardiac surgery. Case 2 was caused by Streptococcus mitis (PEN MIC, 8 μg/ml) and was treated with 4 weeks of vancomycin plus gentamicin, followed by 2 weeks of vancomycin alone. Both patients were alive and relapse-free after ≥6 months follow-up. For the in vitro studies, except for daptomycin-ampicillin, all combinations demonstrated both synergy and bactericidal activity against the S. parasanguinis isolate. Only PEN-gentamicin, daptomycin-gentamicin, and daptomycin-ampicillin demonstrated both synergy and bactericidal activity against the S. mitis strain. Both strains developed high-level daptomycin resistance (HLDR) during daptomycin in vitro passage. In the EE studies, PEN alone failed to clear S. mitis from vegetations, while ceftriaxone and vancomycin were significantly more effective (P < 0.001). The combination of gentamicin with PEN or vancomycin increased bacterial eradication compared to that with the respective monotherapies. In summary, two patients with highly PEN-R VGS IE were cured using vancomycin-based therapy. In vivo, regimens of gentamicin plus either β-lactams or vancomycin were more active than their respective monotherapies. Further clinical studies are needed to confirm the role of vancomycin-based regimens for highly PEN-R VGS IE. The emergence of HLDR among these strains warrants caution in the use of daptomycin therapy for VGS IE.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Javier García-Gonzalez ◽  
Dolors Soy ◽  
Evelyn Shaw ◽  
...  

ABSTRACTWe investigated whether the addition of fosfomycin or cloxacillin to daptomycin provides better outcomes in the treatment of methicillin-resistantStaphylococcus aureus(MRSA) experimental aortic endocarditis in rabbits. Five MRSA strains were used to performin vitrotime-kill studies using standard (106) and high (108) inocula. Combined therapy was compared to daptomycin monotherapy treatment in the MRSA experimental endocarditis model. A human-like pharmacokinetics model was applied, and the equivalents of cloxacillin at 2 g/4 h, fosfomycin at 2 g/6 h, and daptomycin at 6 to 10 mg/kg/day were administered intravenously. A combination of daptomycin and either fosfomycin or cloxacillin was synergistic in the five strains tested at both inocula. A bactericidal effect was detected in four of five strains tested with both combinations. The MRSA-277 strain (vancomycin MIC, 2 μg/ml) was used for the experimental endocarditis model. Daptomycin plus fosfomycin significantly improved the efficacy of daptomycin monotherapy at 6 mg/kg/day in terms of both the proportion of sterile vegetations (100% versus 72%,P= 0.046) and the decrease in the density of bacteria within the vegetations (P= 0.025). Daptomycin plus fosfomycin was as effective as daptomycin monotherapy at 10 mg/kg/day (100% versus 93%,P= 1.00) and had activity similar to that of daptomycin plus cloxacillin when daptomycin was administered at 6 mg/kg/day (100% versus 88%,P= 0.48). Daptomycin nonsusceptibility was not detected in any of the isolates recovered from vegetations. In conclusion, for the treatment of MRSA experimental endocarditis, the combination of daptomycin plus fosfomycin showed synergistic and bactericidal activity.


2011 ◽  
Vol 55 (6) ◽  
pp. 2688-2692 ◽  
Author(s):  
Lu Wang ◽  
Barbara Belisle ◽  
Mansour Bassiri ◽  
Ping Xu ◽  
Dmitri Debabov ◽  
...  

ABSTRACTDuring oxidative burst, neutrophils selectively generate HOCl to destroy invading microbial pathogens. Excess HOCl reacts with taurine, a semi-essential amino acid, resulting in the formation of the longer-lived biogenerated broad-spectrum antimicrobial agent,N-chlorotaurine (NCT). In the presence of an excess of HOCl or under moderately acidic conditions, NCT can be further chlorinated, or it can disproportionate to produceN,N-dichlorotaurine (NNDCT). In the present study, 2,2-dimethyltaurine was used to prepare a more stableN-chlorotaurine, namely,N,N-dichloro-2,2-dimethyltaurine (NVC-422). In addition, we report on the chemical characterization,in vitroantimicrobial properties, and cytotoxicity of this compound. NVC-422 was shown effectively to kill all 17 microbial strains tested, including antibiotic-resistantStaphylococcus aureusandEnterococcus faecium. The minimum bactericidal concentration of NVC-422 against Gram-negative and Gram-positive bacteria ranged from 0.12 to 4 μg/ml. The minimum fungicidal concentrations againstCandida albicansandCandida glabratawere 32 and 16 μg/ml, respectively. NVC-422 has anin vitrocytotoxicity (50% cytotoxicity = 1,440 μg/ml) similar to that of NNDCT. Moreover, our data showed that this agent possesses rapid, pH-dependent antimicrobial activity. At pH 4, NVC-422 completely killed bothEscherichia coliandS. aureuswithin 5 min at a concentration of 32 μg/ml. Finally, the effect of NVC-422 in the treatment of anE. coli-infected granulating wound rat model was evaluated. Treatment of the infected granulating wound with NVC-422 resulted in significant reduction of the bacterial tissue burden and faster wound healing compared to a saline-treated control. These findings suggest that NVC-422 could have potential application as a topical antimicrobial.


2019 ◽  
Vol 7 (1) ◽  
pp. 9-15
Author(s):  
Hamid Beyzaei ◽  
Hadis Hosseini Moghadam ◽  
Ghodsieh Bagherzade ◽  
Reza Aryan ◽  
Mohammadreza Moghaddam-Manesh

Background: Design, identification, and synthesis of new antimicrobial agents along with preventive proceedings are essential to confront antibiotic-resistant pathogenic bacteria. Heterocyclic Schiff bases are biologically important compounds whose antimicrobial potentials have been proven to bacterial and fungal pathogens. Objectives: In this study, some quinoline Schiff bases were synthesized from condensation of 2-chloro3-quinolinecarboxaldehyde and aniline derivatives. Their inhibitory activities were evaluated against 6 gram-positive and 2 gram-negative bacterial pathogens. Methods: Disc diffusion, broth microdilution, and time-kill tests were applied according to the CLSI guidelines to determine IZD, MIC, and MBC values. Results: 2-Chloro-3-quinolinecarboxaldehyde Schiff bases could inhibit the growth of bacteria with IZDs of 7.5-19.8 mm, MICs of 256-2048 μg mL-1, and MBCs of 512 to ≥2048 μg mL-1. Conclusion: Moderate antibacterial effects were observed with heterocyclic Schiff bases. Complexation and structural changes can improve their antimicrobial properties.


2013 ◽  
Vol 58 (2) ◽  
pp. 892-900 ◽  
Author(s):  
Hans H. Locher ◽  
Peter Seiler ◽  
Xinhua Chen ◽  
Susanne Schroeder ◽  
Philippe Pfaff ◽  
...  

ABSTRACTClostridium difficileis a leading cause of health care-associated diarrhea with significant morbidity and mortality, and new options for the treatment ofC. difficile-associated diarrhea (CDAD) are needed. Cadazolid is a new oxazolidinone-type antibiotic that is currently in clinical development for treatment of CDAD. Here, we report thein vitroandin vivoantibacterial evaluation of cadazolid againstC. difficile. Cadazolid showed potentin vitroactivity againstC. difficilewith a MIC range of 0.125 to 0.5 μg/ml, including strains resistant to linezolid and fluoroquinolones. In time-kill kinetics experiments, cadazolid showed a bactericidal effect againstC. difficileisolates, with >99.9% killing in 24 h, and was more bactericidal than vancomycin. In contrast to metronidazole and vancomycin, cadazolid strongly inhibitedde novotoxin A and B formation in stationary-phase cultures of toxigenicC. difficile. Cadazolid also inhibitedC. difficilespore formation substantially at growth-inhibitory concentrations. In the hamster and mouse models for CDAD, cadazolid was active, conferring full protection from diarrhea and death with a potency similar to that of vancomycin. These findings support further investigations of cadazolid for the treatment of CDAD.


Sign in / Sign up

Export Citation Format

Share Document