scholarly journals Resistance and Virulence Mechanisms of Escherichia coli Selected by Enrofloxacin in Chicken

2019 ◽  
Vol 63 (5) ◽  
Author(s):  
Jun Li ◽  
Haihong Hao ◽  
Menghong Dai ◽  
Heying Zhang ◽  
Jianan Ning ◽  
...  

ABSTRACT This study aimed to investigate the genetic characteristics, antibiotic resistance patterns, and novel mechanisms involved in fluoroquinolone (FQ) resistance in commensal Escherichia coli isolates. The E. coli isolates were recovered from a previous clinical study and subjected to antimicrobial susceptibility testing and molecular typing. Known mechanisms of FQ resistance (target site mutations, plasmid-mediated quinolone resistance [PMQR] genes, relative expression levels of efflux pumps and porins) were detected using DNA sequencing of PCR products and real-time quantitative PCR. Whole-genome shotgun sequencing was performed on 11 representative strains to screen for single nucleotide polymorphisms (SNPs). The function of a key SNP (A1541G) was investigated by site-directed mutagenesis and allelic exchange. The results showed that long-term enrofloxacin treatment selected multidrug-resistant (MDR) E. coli isolates in the chicken gut and that these E. coli isolates had diverse genetic backgrounds. Multiple genetic alterations, including double mutations on GyrA (S83L and D87N), a single mutation on ParC (S80I) and ParE (S458E), activation of efflux pumps, and the presence of the QnrS1 protein, contributed to the high-level FQ resistance (enrofloxacin MIC [MICENR] ≥ 128 μg/ml), while the relatively low-level FQ resistance (MICENR = 8 or 16 μg/ml) was commonly mediated by decreased expression of the porin OmpF, besides enhancement of the efflux pumps. No significant relationship was observed between resistance mechanisms and virulence genes. Introduction of the A1541G mutation on aegA was able to increase FQ susceptibility by 2-fold. This study contributes to a better understanding of the development of MDR and the differences underlying the mechanisms of high-level and low-level FQ resistance in E. coli.

2015 ◽  
Vol 81 (20) ◽  
pp. 6953-6963 ◽  
Author(s):  
Zhe Zhao ◽  
Lauren J. Eberhart ◽  
Lisa H. Orfe ◽  
Shao-Yeh Lu ◽  
Thomas E. Besser ◽  
...  

ABSTRACTThe microcin PDI inhibits a diverse group of pathogenicEscherichia colistrains. Coculture of a single-gene knockout library (BW25113;n= 3,985 mutants) against a microcin PDI-producing strain (E. coli25) identified six mutants that were not susceptible (ΔatpA, ΔatpF, ΔdsbA, ΔdsbB, ΔompF, and ΔompR). Complementation of these genes restored susceptibility in all cases, and the loss of susceptibility was confirmed through independent gene knockouts inE. coliO157:H7 Sakai. Heterologous expression ofE. coliompFconferred susceptibility toSalmonella entericaandYersinia enterocoliticastrains that are normally unaffected by microcin PDI. The expression of chimeric OmpF and site-directed mutagenesis revealed that the K47G48N49region within the first extracellular loop ofE. coliOmpF is a putative binding site for microcin PDI. OmpR is a transcriptional regulator forompF, and consequently loss of susceptibility by the ΔompRstrain most likely is related to this function. Deletion of AtpA and AtpF, as well as AtpE and AtpH (missed in the original library screen), resulted in the loss of susceptibility to microcin PDI and the loss of ATP synthase function. Coculture of a susceptible strain in the presence of an ATP synthase inhibitor resulted in a loss of susceptibility, confirming that a functional ATP synthase complex is required for microcin PDI activity. Intransexpression ofompFin the ΔdsbAand ΔdsbBstrains did not restore a susceptible phenotype, indicating that these proteins are probably involved with the formation of disulfide bonds for OmpF or microcin PDI.


1996 ◽  
Vol 40 (10) ◽  
pp. 2380-2386 ◽  
Author(s):  
M J Everett ◽  
Y F Jin ◽  
V Ricci ◽  
L J Piddock

Twenty-eight human isolates of Escherichia coli from Argentina and Spain and eight veterinary isolates received from the Ministry of Agriculture Fisheries and Foods in the United Kingdom required 2 to > 128 micrograms of ciprofloxacin per ml for inhibition. Fragments of gyrA and parC encompassing the quinolone resistance-determining region were amplified by PCR, and the DNA sequences of the fragments were determined. All isolates contained a mutation in gyrA of a serine at position 83 (Ser83) to an Leu, and 26 isolates also contained a mutation of Asp87 to one of four amino acids: Asn (n = 14), Tyr (n = 6), Gly (n = 5), or His (n = 1). Twenty-four isolates contained a single mutation in parC, either a Ser80 to Ile (n = 17) or Arg (n = 2) or a Glu84 to Lys (n = 3). The role of a mutation in gyrB was investigated by introducing wild-type gyrB (pBP548) into all isolates; for three transformants MICs of ciprofloxacin were reduced; however, sequencing of PCR-derived fragments containing the gyrB quinolone resistance-determining region revealed no changes. The analogous region of parE was analyzed in 34 of 36 isolates by single-strand conformational polymorphism analysis and sequencing; however, no amino acid substitutions were discovered. The outer membrane protein and lipopolysaccharide profiles of all isolates were compared with those of reference strains, and the concentration of ciprofloxacin accumulated (with or without 100 microM carbony cyanide m-chlorophenylhydrazone [CCCP] was determined. Twenty-two isolates accumulated significantly lower concentrations of ciprofloxacin than the wild-type E. coli isolate; nine isolates accumulated less then half the concentration. The addition of CCCP increased the concentration of ciprofloxacin accumulated, and in all but one isolate the percent increase was greater than that in the control strains. The data indicate that high-level fluoroquinolone resistance in E. coli involves the acquisition of mutations at multiple loci.


2020 ◽  
Vol 202 (22) ◽  
Author(s):  
Tanisha Teelucksingh ◽  
Laura K. Thompson ◽  
Georgina Cox

ABSTRACT Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.


2014 ◽  
Vol 82 (4) ◽  
pp. 1572-1578 ◽  
Author(s):  
Karen L. Nielsen ◽  
Pia Dynesen ◽  
Preben Larsen ◽  
Lotte Jakobsen ◽  
Paal S. Andersen ◽  
...  

ABSTRACTCathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicatedEscherichia coliurinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 andin vivovirulence. Forty-seven UTI patients and 50 controls who had never had a UTI were included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecalE. coliclones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D).In vivovirulence was investigated in the murine UTI model by use of selected fecal isolates from patients and controls. On average, UTI patients had significantly more LL-37 in urine during infection than postinfection, and patient LL-37 levels postinfection were significantly lower than those of controls. hBD-1 showed similar urine levels for UTI patients and controls. FecalE. coliisolates from controls had higher LL-37 susceptibility than fecal and UTIE. coliisolates from UTI patients.In vivostudies showed a high level of virulence of fecalE. coliisolates from both patients and controls and showed no difference in virulence correlated with the LL-37 MIC level. The results indicate that the concentration of LL-37 in the urinary tract and low susceptibility to LL-37 may increase the likelihood of UTI in a complex interplay between host and pathogen attributes.


2013 ◽  
Vol 57 (10) ◽  
pp. 5158-5161 ◽  
Author(s):  
Francisco José Pérez-Llarena ◽  
Frédéric Kerff ◽  
Laura Zamorano ◽  
María Carmen Fernández ◽  
Maria Luz Nuñez ◽  
...  

ABSTRACTA novel class C β-lactamase (FOX-8) was isolated from a clinical strain ofEscherichia coli. The FOX-8 enzyme possessed a unique substitution (Phe313Leu) compared to FOX-3. IsogenicE. colistrains carrying FOX-8 showed an 8-fold reduction in resistance to ceftazidime relative to FOX-3. In a kinetic analysis, FOX-8 displayed a 33-fold reduction inkcat/Kmfor ceftazidime compared to FOX-3. In the FOX family of β-lactamases, the Phe313 residue located in the R2 loop affects ceftazidime hydrolysis and alters the phenotype ofE. colistrains carrying this variant.


2014 ◽  
Vol 58 (4) ◽  
pp. 2472-2474 ◽  
Author(s):  
Laurent Poirel ◽  
Encho Savov ◽  
Arzu Nazli ◽  
Angelina Trifonova ◽  
Iva Todorova ◽  
...  

ABSTRACTTwelve consecutive carbapenem-resistantEscherichia coliisolates were recovered from patients (infection or colonization) hospitalized between March and September 2012 in different units at a hospital in Bulgaria. They all produced the carbapenemase NDM-1 and the extended-spectrum-β-lactamase CTX-M-15, together with the 16S rRNA methylase RmtB, conferring high-level resistance to all aminoglycosides. All those isolates were clonally related and belonged to the same sequence type, ST101. In addition to being the first to identify NDM-producing isolates in Bulgaria, this is the very first study reporting an outbreak of NDM-1-producingE. coliin the world.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


2014 ◽  
Vol 81 (4) ◽  
pp. 1397-1405 ◽  
Author(s):  
Delphine Bibbal ◽  
Estelle Loukiadis ◽  
Monique Kérourédan ◽  
Franck Ferré ◽  
Françoise Dilasser ◽  
...  

ABSTRACTThe main pathogenic enterohemorrhagicEscherichia coli(EHEC) strains are defined as Shiga toxin (Stx)-producingE. coli(STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96E. coliisolates, including 33 top five STEC and 63 atypical enteropathogenicE. coli(aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked anstxgene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P< 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.


2013 ◽  
Vol 58 (2) ◽  
pp. 1146-1152 ◽  
Author(s):  
Jia Chang Cai ◽  
Rong Zhang ◽  
Yan Yan Hu ◽  
Hong Wei Zhou ◽  
Gong-Xiang Chen

ABSTRACTTwenty-two KPC-2-producingEscherichia coliisolates were obtained from three hospitals in Hangzhou, China, from 2007 to 2011. One isolate, with OmpC porin deficiency, exhibited high-level carbapenem resistance. Pulsed-field gel electrophoresis showed that few isolates were indistinguishable or closely related. Multilocus sequence typing indicated that sequence type 131 (ST131) was the predominant type (9 isolates, 40.9%), followed by ST648 (5 isolates), ST405 (2 isolates), ST38 (2 isolates), and 4 single STs, ST69, ST2003, ST2179, and ST744. Phylogenetic analysis indicated that 9 group B2 isolates belonged to ST131, and 5 of 11 group D isolates belonged to ST648. Only one group B1 isolate and one group A isolate were identified. A representative plasmid (pE1) was partially sequenced, and a 7,788-bp DNA fragment encoding Tn3transposase, Tn3resolvase, ISKpn8transposase, KPC-2, and ISKpn6-like transposase was obtained. TheblaKPC-2-surrounding sequence was amplified by a series of primers. The PCR results showed that 13 isolates were consistent with the genetic environment in pE1. It is the first report of rapid emergence of KPC-2-producingE. coliST131 in China. TheblaKPC-2gene of most isolates was located on a similar genetic structure.


2012 ◽  
Vol 80 (10) ◽  
pp. 3669-3678 ◽  
Author(s):  
Yu-ting Tseng ◽  
Shainn-Wei Wang ◽  
Kwang Sik Kim ◽  
Ying-Hsiang Wang ◽  
Yufeng Yao ◽  
...  

ABSTRACTNeonatal meningitisEscherichia coli(NMEC) is the most common Gram-negative organism that is associated with neonatal meningitis, which usually develops as a result of hematogenous spread of the bacteria. There are two key pathogenesis processes for NMEC to penetrate into the brain, the essential step for the development ofE. colimeningitis: a high-level bacteremia and traversal of the blood-brain barrier (BBB). Our previous study has shown that the bacterial outer membrane protein NlpI contributes to NMEC binding to and invasion of brain microvascular endothelial cells, the major component cells of the BBB, suggesting a role for NlpI in NMEC crossing of the BBB. In this study, we showed that NlpI is involved in inducing a high level of bacteremia. In addition, NlpI contributed to the recruitment of the complement regulator C4bp to the surface of NMEC to evade serum killing, which is mediated by the classical complement pathway. NlpI may be involved in the interaction between C4bp and OmpA, which is an outer membrane protein that directly interacts with C4bp on the bacterial surface. The involvement of NlpI in two key pathogenesis processes of NMEC meningitis may make this bacterial factor a potential target for prevention and therapy ofE. colimeningitis.


Sign in / Sign up

Export Citation Format

Share Document