scholarly journals Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism

2018 ◽  
Vol 62 (5) ◽  
Author(s):  
M. V. Sheraton ◽  
J. K. H. Yam ◽  
C. H. Tan ◽  
H. S. Oh ◽  
E. Mancini ◽  
...  

ABSTRACT Segregation of bacteria based on their metabolic activities in biofilms plays an important role in the development of antibiotic resistance. Mushroom-shaped biofilm structures, which are reported for many bacteria, exhibit topographically varying levels of multiple drug resistance from the cap of the mushroom to its stalk. Understanding the dynamics behind the formation of such structures can aid in design of drug delivery systems, antibiotics, or physical systems for removal of biofilms. We explored the development of metabolically heterogeneous Pseudomonas aeruginosa biofilms using numerical models and laboratory knockout experiments on wild-type and chemotaxis-deficient mutants. We show that chemotactic processes dominate the transformation of slender and hemispherical structures into mushroom structures with a signature cap. Cellular Potts model simulation and experimental data provide evidence that accelerated movement of bacteria along the periphery of the biofilm, due to nutrient cues, results in the formation of mushroom structures and bacterial segregation. Multidrug resistance of bacteria is one of the most threatening dangers to public health. Understanding the mechanisms of the development of mushroom-shaped biofilms helps to identify the multidrug-resistant regions. We decoded the dynamics of the structural evolution of bacterial biofilms and the physics behind the formation of biofilm structures as well as the biological triggers that produce them. Combining in vitro gene knockout experiments with in silico models showed that chemotactic motility is one of the main driving forces for the formation of stalks and caps. Our results provide physicists and biologists with a new perspective on biofilm removal and eradication strategies.

2016 ◽  
Vol 60 (8) ◽  
pp. 5068-5071 ◽  
Author(s):  
Nicole Stoesser ◽  
Anna E. Sheppard ◽  
Gisele Peirano ◽  
Robert P. Sebra ◽  
Tarah Lynch ◽  
...  

ABSTRACTTheblaIMP-14carbapenem resistance gene has largely previously been observed inPseudomonas aeruginosaandAcinetobacterspp. As part of global surveillance and sequencing of carbapenem-resistantEscherichia coli, we identified a sequence type 131 strain harboringblaIMP-14within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2plasmid. The emergence ofblaIMP-14in this context in the ST131 lineage is of potential clinical concern.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Rasmus Lykke Marvig ◽  
Søren Damkiær ◽  
S. M. Hossein Khademi ◽  
Trine M. Markussen ◽  
Søren Molin ◽  
...  

ABSTRACTPseudomonas aeruginosaairway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist,P. aeruginosadepends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and thePseudomonasheme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation ofP. aeruginosato the host environment. Here we investigated the within-host evolution of the transmissibleP. aeruginosaDK2 lineage. We found positive selection for promoter mutations leading to increased expression of thephusystem. By mimicking conditions of the CF airwaysin vitro, we experimentally demonstrate that increased expression ofphuRconfers a growth advantage in the presence of hemoglobin, thus suggesting thatP. aeruginosaevolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additionalP. aeruginosalineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages,phuRpromoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment ofP. aeruginosainfections in CF patients.IMPORTANCEMost bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogenPseudomonas aeruginosato cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution ofP. aeruginosa, and we found evidence thatP. aeruginosaduring long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Humera Kausar ◽  
Shabbir Hussain ◽  
Afia Muhammad Akram

Pseudomonas aeruginosa is a widespread organism, caused severe nosocomial infection in human andassociated with multiple drug resistance (MDR) Objective: The present study was carried out to observecurrent antimicrobial resistant pattern of Pseudomonas aeruginosa in Lahore and to detect the Metallobeta-lactamase (MBL) gene in carbapenem resistant Pseudomonas aeruginosa Methods: By screening360 samples total 123 Pseudomonas aeruginosa was identified by standard microbiology techniques suchas microscopy and biochemical testing. The isolated Pseudomonas aeruginosa was evaluated for drugresistance by disc diffusion method and polymerase chain reaction (PCR) was used to identify thecarbapenem resistance causing gene (bla-VIM and bla-IMP) Results: Following antibiotic resistantpattern was observed, Gentamycin (59.00%), Ceftazidime (58.7%), Ceftriaxone (58.00%), Cefotazime(57.0%) and Ciprofloxacin (55.00%). Resistance rates to carbapenem group of antibiotics is Doripenem(30.5%) Meropenem (31.0%) and Imipenem (28.0%). Out of 123 samples of Pseudomonas aeruginosa, 28isolates were found resistant to carbapenem group of antibiotic which was supposed to be highlysensitive for this bacterium. Molecular based identification of resistance genes showed that bla-IMP genewas present in 32.1% (09) and bla-VIM was found positive in 17.8% (04) samples. Metallo-beta-lactamasesproducing genes (bla-VIM and bla-IMP), among carbapenem resistant Pseudomonas aeruginosa weredetected in 28.1% of samples. If other carbapenem resistant gene were also included this number mightbe higher Conclusions: PCR based test should be included in routine laboratory examination for quickdetection of the resistance causing genes.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Samuel Fenn ◽  
Jean-Frédéric Dubern ◽  
Cristina Cigana ◽  
Maura De Simone ◽  
James Lazenby ◽  
...  

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro. Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA. IMPORTANCE The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The host-specific nature of P. aeruginosa virulence adds complexity to the discovery of these types of targets. Using a sequence of in vitro assays and phylogenetically diverse in vivo disease models, we have identified a PA4130 mutant with reduced production in a number of virulence traits and severe attenuation across all infection models tested. Characterization of PA4130 revealed that it is a ferredoxin-nitrite reductase and hence was named NirA. These results, together with attenuation of nirA mutants in different clinical isolates, high level conservation of its gene product in P. aeruginosa genomes, and the lack of orthologues in human genomes, make NirA an attractive antivirulence target.


2008 ◽  
Vol 74 (9) ◽  
pp. 2834-2840 ◽  
Author(s):  
Guojun Wang ◽  
Takeshi Hosaka ◽  
Kozo Ochi

ABSTRACT We recently described a new method to activate antibiotic production in bacteria by introducing a mutation conferring resistance to a drug such as streptomycin, rifampin, paromomycin, or gentamicin. This method, however, enhanced antibiotic production by only up to an order of magnitude. Working with Streptomyces coelicolor A3(2), we established a method for the dramatic activation of antibiotic production by the sequential introduction of multiple drug resistance mutations. Septuple and octuple mutants, C7 and C8, thus obtained by screening for resistance to seven or eight drugs, produced huge amounts (1.63 g/liter) of the polyketide antibiotic actinorhodin, 180-fold higher than the level produced by the wild type. This dramatic overproduction was due to the acquisition of mutant ribosomes, with aberrant protein and ppGpp synthesis activity, as demonstrated by in vitro protein synthesis assays and by the abolition of antibiotic overproduction with relA disruption. This new approach, called “ribosome engineering,” requires less time, cost, and labor than other methods and may be widely utilized for bacterial strain improvement.


Sign in / Sign up

Export Citation Format

Share Document