scholarly journals Liposome Encapsulation of Ciprofloxacin Improves Protection against Highly Virulent Francisella tularensis Strain Schu S4

2014 ◽  
Vol 58 (6) ◽  
pp. 3053-3059 ◽  
Author(s):  
Karleigh A. Hamblin ◽  
Stuart J. Armstrong ◽  
Kay B. Barnes ◽  
Carwyn Davies ◽  
Jonathan P. Wong ◽  
...  

ABSTRACTLiposome-encapsulated ciprofloxacin for inhalation (CFI) was investigated as a putative postexposure therapeutic for two strains ofFrancisella tularensis. The efficacies of oral ciprofloxacin and intranasally instilled CFI could not be distinguished in a mouse model of infection with theF. tularensislive vaccine strain (LVS), where a single dose of either formulation offered full protection against a lethal challenge. However, mouse studies with the more virulent Schu S4 strain ofF. tularensisdemonstrated that a higher level of protection against a lethal aerosol infection is provided by CFI than by oral ciprofloxacin. In addition, using this infection model, it was possible to discriminate the efficacy of intranasally instilled CFI from that of aerosolized CFI, with aerosolized CFI providing full protection after just a single dose. The improved efficacy of CFI compared to oral ciprofloxacin is likely due to the high sustained concentrations of ciprofloxacin in the lung. In summary, CFI may be a promising therapy, perhaps enabling the prophylactic regimen to be shortened, for use in the event of a deliberate release ofF. tularensis. The prophylactic efficacy of CFI against other biological warfare (BW) threat agents also warrants investigation.

2012 ◽  
Vol 19 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Ravinder Kaur ◽  
Shan Chen ◽  
Maria T. Arévalo ◽  
Qingfu Xu ◽  
Yanping Chen ◽  
...  

ABSTRACTFrancisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, ofF. tularensisLVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 107PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD50)F. tularensisLVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain ofF. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 ofF. tularensisLVS.


2016 ◽  
Vol 60 (4) ◽  
pp. 2052-2062 ◽  
Author(s):  
Ky V. Hoang ◽  
Heather Curry ◽  
Michael A. Collier ◽  
Hassan Borteh ◽  
Eric M. Bachelder ◽  
...  

ABSTRACTFrancisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Philip M. Ireland ◽  
Helen L. Bullifent ◽  
Nicola J. Senior ◽  
Stephanie J. Southern ◽  
Zheng Rong Yang ◽  
...  

ABSTRACTThe highly virulent intracellular pathogenFrancisella tularensisis a Gram-negative bacterium that has a wide host range, including humans, and is the causative agent of tularemia. To identify new therapeutic drug targets and vaccine candidates and investigate the genetic basis ofFrancisellavirulence in the Fischer 344 rat, we have constructed anF. tularensisSchu S4 transposon library. This library consists of more than 300,000 unique transposon mutants and represents a transposon insertion for every 6 bp of the genome. A transposon-directed insertion site sequencing (TraDIS) approach was used to identify 453 genes essential for growthin vitro. Many of these essential genes were mapped to key metabolic pathways, including glycolysis/gluconeogenesis, peptidoglycan synthesis, fatty acid biosynthesis, and the tricarboxylic acid (TCA) cycle. Additionally, 163 genes were identified as required for fitness during colonization of the Fischer 344 rat spleen. Thisin vivoselection screen was validated through the generation of marked deletion mutants that were individually assessed within a competitive index study against the wild-typeF. tularensisSchu S4 strain.IMPORTANCEThe intracellular bacterial pathogenFrancisella tularensiscauses a disease in humans characterized by the rapid onset of nonspecific symptoms such as swollen lymph glands, fever, and headaches.F. tularensisis one of the most infectious bacteria known and following pulmonary exposure can have a mortality rate exceeding 50% if left untreated. The low infectious dose of this organism and concerns surrounding its potential as a biological weapon have heightened the need for effective and safe therapies. To expand the repertoire of targets for therapeutic development, we initiated a genome-wide analysis. This study has identified genes that are important forF. tularensisunderin vitroandin vivoconditions, providing candidates that can be evaluated for vaccine or antibacterial development.


2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Katharina Richard ◽  
Barbara J. Mann ◽  
Aiping Qin ◽  
Eileen M. Barry ◽  
Robert K. Ernst ◽  
...  

ABSTRACT Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo. Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.


2014 ◽  
Vol 82 (4) ◽  
pp. 1523-1539 ◽  
Author(s):  
Jed A. Rasmussen ◽  
Deborah M. B. Post ◽  
Bradford W. Gibson ◽  
Stephen R. Lindemann ◽  
Michael A. Apicella ◽  
...  

ABSTRACTThe virulence factors mediatingFrancisellapathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms.Francisella tularensisproduces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using anF. tularensisSchu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236andFTT1238c) revealed similarity to those forwaa(rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to theF. tularensismutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type AF. tularensischallenge.


2011 ◽  
Vol 79 (9) ◽  
pp. 3665-3676 ◽  
Author(s):  
Brian C. Russo ◽  
Joseph Horzempa ◽  
Dawn M. O'Dee ◽  
Deanna M. Schmitt ◽  
Matthew J. Brown ◽  
...  

ABSTRACTTularemia is a debilitating febrile illness caused by the category A biodefense agentFrancisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by whichF. tularensissenses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions ofF. tularensiswith host cells. However, it is not known whether responsiveness to polyamines is necessary for the virulence of the organism. Through transposon mutagenesis ofF. tularensissubsp.holarcticalive vaccine strain (LVS), we identified FTL_0883 as a gene important for spermine responsiveness. In-frame deletion mutants of FTL_0883 and FTT_0615c, the homologue of FTL_0883 inF. tularensissubsp.tularensisSchu S4 (Schu S4), elicited higher levels of cytokines from human and murine macrophages compared to wild-type strains. Although deletion of FTL_0883 attenuated LVS replication within macrophagesin vitro, the Schu S4 mutant with a deletion in FTT_0615c replicated similarly to wild-type Schu S4. Nevertheless, both the LVS and the Schu S4 mutants were significantly attenuatedin vivo. Growth and dissemination of the Schu S4 mutant was severely reduced in the murine model of pneumonic tularemia. This attenuation depended on host responses to elevated levels of proinflammatory cytokines. These data associate responsiveness to polyamines with tularemia pathogenesis and define FTL_0883/FTT_0615c as anF. tularensisgene important for virulence and evasion of the host immune response.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Zackery P. Bulman ◽  
Michael J. Satlin ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
Beom Soo Shin ◽  
...  

ABSTRACT Pharmacodynamics of a polymyxin B, meropenem, and rifampin triple combination were examined against Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) ST258. In time-kill experiments against three KPC-Kp isolates, triple combination generated 8.14, 8.19, and 8.29 log10 CFU/ml reductions within 24 h. In the hollow-fiber infection model, the triple combination caused maximal killing of 5.16 log10 CFU/ml at 78 h and the time required for regrowth was more than doubled versus the 2-drug combinations. Remarkably, combinations with a high single-dose polymyxin B burst plus rifampin preserved KPC-Kp polymyxin susceptibility (MIC240 h = 0.5 mg/liter) versus the same combination with traditionally dosed polymyxin B, where resistance was amplified (MIC240 h = 32 mg/liter).


2013 ◽  
Vol 81 (11) ◽  
pp. 4026-4040 ◽  
Author(s):  
Gregory T. Robertson ◽  
Robert Child ◽  
Christine Ingle ◽  
Jean Celli ◽  
Michael V. Norgard

ABSTRACTIglE is a small, hypothetical protein encoded by the duplicatedFrancisellapathogenicity island (FPI). Inactivation of both copies ofiglErenderedFrancisella tularensissubsp.tularensisSchu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression ofiglEintransfromattTn7under the control of theFrancisella rpsLpromoter, thereby establishing that the loss ofiglE, and not polar effects on downstreamvgrGgene expression, was responsible for the defect. IglE is exported to theFrancisellaouter membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [3H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using theiglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication ofFrancisella tularensisin J774A.1 macrophages. Thus, IglE is essential forFrancisella tularensisvirulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present.


2016 ◽  
Vol 60 (8) ◽  
pp. 4764-4769 ◽  
Author(s):  
Alexander J. Lepak ◽  
David R. Andes

ABSTRACTDelafloxacin is a broad-spectrum anionic fluoroquinolone under development for the treatment of bacterial pneumonia. The goal of the study was to determine the pharmacokinetic/pharmacodynamic (PK/PD) targets in the murine lung infection model forStaphylococcus aureus,Streptococcus pneumoniae, andKlebsiella pneumoniae. Four isolates of each species were utilized forin vivostudies: forS. aureus, one methicillin-susceptible and three methicillin-resistant isolates;S. pneumoniae, two penicillin-susceptible and two penicillin-resistant isolates;K. pneumoniae, one wild-type and three extended-spectrum beta-lactamase-producing isolates. MICs were determined using CLSI methods. A neutropenic murine lung infection model was utilized for all treatment studies, and drug dosing was by the subcutaneous route. Single-dose plasma pharmacokinetics was determined in the mouse model after administration of 2.5, 10, 40, and 160 mg/kg. Forin vivostudies, 4-fold-increasing doses of delafloxacin (range, 0.03 to 160 mg/kg) were administered every 6 h (q6h) to infected mice. Treatment outcome was measured by determining organism burden in the lung (CFU counts) at the end of each experiment (24 h). The Hill equation for maximum effect (Emax) was used to model the dose-response data. The magnitude of the PK/PD index, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC), associated with net stasis and 1-log kill endpoints was determined in the lung model for all isolates. MICs ranged from 0.004 to 1 mg/liter. Single-dose PK parameter ranges include the following: for maximum concentration of drug in serum (Cmax), 2 to 70.7 mg/liter; AUC from 0 h to infinity (AUC0–∞), 2.8 to 152 mg · h/liter; half-life (t1/2), 0.7 to 1 h. At the start of therapy mice had 6.3 ± 0.09 log10CFU/lung. In control mice the organism burden increased 2.1 ± 0.44 log10CFU/lung over the study period. There was a relatively steep dose-response relationship observed with escalating doses of delafloxacin. Maximal organism reductions ranged from 2 log10to more than 4 log10. The median free-drug AUC/MIC magnitude associated with net stasis for each species group was 1.45, 0.56, and 40.3 forS. aureus,S. pneumoniae, andK. pneumoniae, respectively. AUC/MIC targets for the 1-log kill endpoint were 2- to 5-fold higher. Delafloxacin demonstratedin vitroandin vivopotency against a diverse group of pathogens, including those with phenotypic drug resistance to other classes. These results have potential relevance for clinical dose selection and evaluation of susceptibility breakpoints for delafloxacin for the treatment of lower respiratory tract infections involving these pathogens.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Iain J. Abbott ◽  
Elke van Gorp ◽  
Aart van der Meijden ◽  
Rixt A. Wijma ◽  
Joseph Meletiadis ◽  
...  

ABSTRACT There are limited treatment options for enterococcal urinary tract infections, especially vancomycin-resistant Enterococcus (VRE). Oral fosfomycin is a potential option, although limited data are available guiding dosing and susceptibility. We undertook pharmacodynamic profiling of fosfomycin against E. faecalis and E. faecium isolates using a dynamic in vitro bladder infection model. Eighty-four isolates underwent fosfomycin agar dilution susceptibility testing (E. faecalis MIC50/90 32/64 μg/ml; E. faecium MIC50/90 64/128 μg/ml). Sixteen isolates (including E. faecalis ATCC 29212 and E. faecium ATCC 35667) were chosen to reflect the MIC range and tested in the bladder infection model with synthetic human urine (SHU). Under drug-free conditions, E. faecium demonstrated greater growth restriction in SHU compared to E. faecalis (E. faecium maximal growth 5.8 ± 0.6 log10 CFU/ml; E. faecalis 8.0 ± 1.0 log10 CFU/ml). Isolates were exposed to high and low fosfomycin urinary concentrations after a single dose, and after two doses given over two days with low urinary concentration exposure. Simulated concentrations closely matched the target (bias 2.3%). E. faecalis isolates required greater fosfomycin exposure for 3 log10 kill from the starting inoculum compared with E. faecium. The ƒAUC0-72/MIC and ƒ%T > MIC0-72 for E. faecalis were 672 and 70%, compared to 216 and 51% for E. faecium, respectively. There was no rise in fosfomycin MIC postexposure. Two doses of fosfomycin with low urinary concentrations resulted in equivalent growth inhibition to a single dose with high urinary concentrations. With this urinary exposure, fosfomycin was effective in promoting suppression of regrowth (>3 log10 kill) in the majority of isolates.


Sign in / Sign up

Export Citation Format

Share Document