scholarly journals Amikacin-Fosfomycin at a Five-to-Two Ratio: Characterization of Mutation Rates in Microbial Strains Causing Ventilator-Associated Pneumonia and Interactions with Commonly Used Antibiotics

2014 ◽  
Vol 58 (7) ◽  
pp. 3708-3713 ◽  
Author(s):  
A. Bruce Montgomery ◽  
Paul R. Rhomberg ◽  
Tammy Abuan ◽  
Kathie-Anne Walters ◽  
Robert K. Flamm

ABSTRACTThe amikacin-fosfomycin inhalation system (AFIS), a combination of antibiotics administered with an in-line nebulizer delivery system, is being developed for adjunctive treatment of ventilator-associated pneumonia (VAP). Thein vitrocharacterization of amikacin-fosfomycin (at a 5:2 ratio) described here included determining resistance selection rates for pathogens that are representative of those commonly associated with VAP (including multidrug-resistant strains) and evaluating interactions with antibiotics commonly used intravenously to treat VAP. Spontaneous resistance to amikacin-fosfomycin (5:2) was not observed for most strains tested (n, 10/14). Four strains had spontaneously resistant colonies (frequencies, 4.25 × 10−8to 3.47 × 10−10), for which amikacin-fosfomycin (5:2) MICs were 2- to 8-fold higher than those for the original strains. After 7 days of serial passage, resistance (>4-fold increase over the baseline MIC) occurred in fewer strains (n, 4/14) passaged in the presence of amikacin-fosfomycin (5:2) than with either amikacin (n, 7/14) or fosfomycin (n, 12/14) alone. Interactions between amikacin-fosfomycin (5:2) and 10 comparator antibiotics in checkerboard testing against 30 different Gram-positive or Gram-negative bacterial strains were synergistic (fractional inhibitory concentration [FIC] index, ≤0.5) for 6.7% (n, 10/150) of combinations tested. No antagonism was observed. Synergy was confirmed by time-kill methodology for amikacin-fosfomycin (5:2) plus cefepime (againstEscherichia coli), aztreonam (againstPseudomonas aeruginosa), daptomycin (againstEnterococcus faecalis), and azithromycin (againstStaphylococcus aureus). Amikacin-fosfomycin (5:2) was bactericidal at 4-fold the MIC for 7 strains tested. The reduced incidence of development of resistance to amikacin-fosfomycin (5:2) compared with that for amikacin or fosfomycin alone, and the lack of negative interactions with commonly used intravenous antibiotics, further supports the development of AFIS for the treatment of VAP.

2014 ◽  
Vol 80 (15) ◽  
pp. 4779-4784 ◽  
Author(s):  
Rachael E. Antwis ◽  
Gerardo Garcia ◽  
Andrea L. Fidgett ◽  
Richard F. Preziosi

ABSTRACTSymbiotic bacterial communities play a key role in protecting amphibians from infectious diseases including chytridiomycosis, caused by the pathogenic fungusBatrachochytrium dendrobatidis. Events that lead to the disruption of the bacterial community may have implications for the susceptibility of amphibians to such diseases. Amphibians are often marked both in the wild and in captivity for a variety of reasons, and although existing literature indicates that marking techniques have few negative effects, the response of cutaneous microbial communities has not yet been investigated. Here we determine the effects of passive integrated transponder (PIT) tagging on culturable cutaneous microbial communities of captive Morelet's tree frogs (Agalychnis moreletii) and assess the isolated bacterial strains for anti-B. dendrobatidisactivityin vitro. We find that PIT tagging causes a major disruption to the bacterial community associated with the skin of frogs (∼12-fold increase in abundance), as well as a concurrent proliferation in resident fungi (up to ∼200-fold increase). Handling also caused a disruption the bacterial community, although to a lesser extent than PIT tagging. However, the effects of both tagging and handling were temporary, and after 2 weeks, the bacterial communities were similar to their original compositions. We also identify two bacterial strains that inhibitB. dendrobatidis, one of which increased in abundance on PIT-tagged frogs at 1 day postmarking, while the other was unaffected. These results show that PIT tagging has previously unobserved consequences for cutaneous microbial communities of frogs and may be particularly relevant for studies that intend to use PIT tagging to identify individuals involved in trials to develop probiotic treatments.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Gregory G. Stone ◽  
Patricia A. Bradford ◽  
Margaret Tawadrous ◽  
Dianna Taylor ◽  
Mary Jane Cadatal ◽  
...  

ABSTRACT Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.)


2011 ◽  
Vol 55 (5) ◽  
pp. 2362-2368 ◽  
Author(s):  
Katy L. Blake ◽  
Chris P. Randall ◽  
Alex J. O'Neill

ABSTRACTLantibiotics such as nisin (NIS) are peptide antibiotics that may have a role in the chemotherapy of bacterial infections. A perceived benefit of lantibiotics for clinical use is their low propensity to select resistance, although detailed resistance studies with relevant bacterial pathogens are lacking. Here we examined the development of resistance to NIS inStaphylococcus aureus, establishing that mutants, including small-colony variants, exhibiting substantial (4- to 32-fold) reductions in NIS susceptibility could be selected readily. Comparative genome sequencing of a single NISrmutant exhibiting a 32-fold increase in NIS MIC revealed the presence of only two mutations, leading to the substitutions V229G in the purine operon repressor, PurR, and A208E in an uncharacterized protein encoded by SAOUHSC_02955. Independently selected NISrmutants also harbored mutations in the genes encoding these products. Reintroduction of these mutations into theS. aureuschromosome alone and in combination revealed that SAOUHSC_02955(A208E) made the primary contribution to the resistance phenotype, conferring up to a 16-fold decrease in NIS susceptibility. Bioinformatic analyses suggested that this gene encodes a sensor histidine kinase, leading us to designate it “nisin susceptibility-associated sensor (nsaS).” Doubling-time determinations and mixed-culture competition assays between NISrand NISsstrains indicated that NIS resistance had little impact on bacterial fitness, and resistance was stable in the absence of selection. The apparent ease with whichS. aureuscan develop and maintain NIS resistancein vitrosuggests that resistance to NIS and other lantibiotics with similar modes of action would arise in the clinic if these agents are employed as chemotherapeutic drugs.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ying Sun ◽  
Xueyuan Liao ◽  
Zhigang Huang ◽  
Yaliu Xie ◽  
Yanbin Liu ◽  
...  

ABSTRACT This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo. In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo. The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Renee Fleeman ◽  
Kurt S. Van Horn ◽  
Megan M. Barber ◽  
Whittney N. Burda ◽  
David L. Flanigan ◽  
...  

ABSTRACT We previously reported a series of N 2,N 4-disubstituted quinazoline-2,4-diamines as dihydrofolate reductase inhibitors with potent in vitro and in vivo antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. In this work, we extended our previous study to the Gram-negative pathogen Acinetobacter baumannii. We determined that optimized N 2,N 4-disubstituted quinazoline-2,4-diamines are strongly antibacterial against multidrug-resistant A. baumannii strains when the 6-position is replaced with a halide or an alkyl substituent. Such agents display potent antibacterial activity, with MICs as low as 0.5 μM, while proving to be strongly bactericidal. Interestingly, these compounds also possess the potential for antibiofilm activity, eradicating 90% of cells within a biofilm at or near MICs. Using serial passage assays, we observed a limited capacity for the development of resistance toward these molecules (4-fold increase in MIC) compared to existing folic acid synthesis inhibitors, such as trimethoprim (64-fold increase) and sulfamethoxazole (128-fold increase). We also identified limited toxicity toward human cells, with 50% lethal doses (LD50s) of ≤23 μM for lead agents 4 and 5. Finally, we demonstrated that our lead agents have excellent in vivo efficacy, with lead agent 5 proving more efficacious than tigecycline in a murine model of A. baumannii infection (90% survival versus 66%), despite being used at a lower dose (2 versus 30 mg kg−1). Together, our results demonstrate that N 2,N 4-disubstituted quinazoline-2,4-diamines have strong antimicrobial and antibiofilm activities against both Gram-positive organisms and Gram-negative pathogens, suggesting strong potential for their development as antibacterial agents.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Mary Ann Powles ◽  
Andrew Galgoci ◽  
Andrew Misura ◽  
Lawrence Colwell ◽  
Karen H. Dingley ◽  
...  

ABSTRACT The World Health Organization has identified antimicrobial resistance as a global public health threat since the prevalence and spread of antibiotic resistance among bacterial pathogens worldwide are staggering. Carbapenems, such as imipenem and meropenem, have been used to treat multidrug-resistant bacteria; however, since the development of resistance to carbapenems, β-lactam antibiotics in combination with β-lactamase inhibitors (BLI) has been one of the most successful strategies to enhance the activity of β-lactam antibiotics. Relebactam (REL) is a new BLI which has been found to inhibit class A and class C β-lactamases in vitro. REL has been reported to restore imipenem's activity against both imipenem-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. Reported here are the in vivo efficacy studies of the imipenem-cilastatin (IMI)-REL combination in mouse models of disseminated and pulmonary infection caused by imipenem-resistant clinical isolates of P. aeruginosa and K. pneumoniae. The combination was also evaluated in a P. aeruginosa delayed pulmonary model of infection. IMI-REL was found to be effective in the disseminated model of infection with log reduction in P. aeruginosa CFU of 3.73, 3.13, and 1.72 at REL doses of 40, 20, and 10 mg/kg, respectively. For K. pneumoniae, log reductions in CFU of 2.36, 3.06, and 2.29 were reported at REL doses of 80, 40, and 20 mg/kg, respectively. The combination was less effective in the delayed pulmonary model than in the immediate pulmonary model; however, overall REL was found to be effective against these imipenem-resistant strains.


2014 ◽  
Vol 58 (4) ◽  
pp. 2274-2280 ◽  
Author(s):  
Helio S. Sader ◽  
David J. Farrell ◽  
Robert K. Flamm ◽  
Ronald N. Jones

ABSTRACTTigecycline was initially approved by the U.S. Food and Drug Administration (FDA) in June 2005. We assessed the evolution of tigecyclinein vitroactivities since the initial approval of tigecycline for clinical use by analyzing the results of 7 years (2006 to 2012) of data from the SENTRY Antimicrobial Surveillance Program in the United States. We also analyzed trends over time for key resistance phenotypes. The analyses included 68,608 unique clinical isolates collected from 29 medical centers and tested for susceptibility using reference broth microdilution methods. Tigecycline was highly active against Gram-positive organisms, with MIC50and MIC90values of 0.12 and 0.25 μg/ml forStaphylococcus aureus(28,278 strains; >99.9% susceptible), 0.06 to 0.12 and 0.12 to 0.25 μg/ml for enterococci (99.3 to 99.6% susceptible), and ≤0.03 and ≤0.03 to 0.06 μg/ml for streptococci (99.9 to 100.0% susceptible), respectively. When tested against 20,457Enterobacteriaceaestrains, tigecycline MIC50and MIC90values were 0.25 and 1 μg/ml, respectively (98.3% susceptible using U.S. FDA breakpoints). No trend toward increasing tigecycline resistance (nonsusceptibility) was observed for any species or group during the study period. The prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR)Enterobacteriaceaeincreased from 4.4 and 0.5%, in 2006 to 8.5 and 1.5% in 2012, respectively. During the same period, the prevalence ofEscherichia coliandKlebsiellaspp. with an extended-spectrum β-lactamase (ESBL) phenotype increased from 5.8 and 9.1% to 11.1 and 20.4%, respectively, whereas rates of meropenem-nonsusceptibleKlebsiella pneumoniaeescalated from 2.2% in 2006 to 10.8% in 2012. The results of this investigation show that tigecycline generally retained potent activities against clinically important organisms isolated in U.S. institutions, including MDR organism subsets of Gram-positive and Gram-negative pathogens.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 473
Author(s):  
Dilyana Gospodonova ◽  
Iliana Ivanova ◽  
Todorka Vladkova

The aim of this study was to prepare TiO2/Ag/Cu magnetron co-sputtered coatings with controlled characteristics and to correlate them with the antimicrobial activity of the coated glass samples. The elemental composition and distribution, surface morphology, wettability, surface energy and its component were estimated as the surface characteristics influencing the bioadhesion. Well expressed, specific, Ag/Cu concentration-dependent antimicrobial activity in vitro was demonstrated toward Gram-negative and Gram-positive standard test bacterial strains both by diffusion 21 assay and by Most Probable Number of surviving cells. Direct contact and eluted silver/coper nanoparticles killing were experimentally demonstrated as a mode of the antimicrobial action of the studied TiO2/Ag/Cu thin composite coatings. It is expected that they would ensure a broad spectrum bactericidal activity during the indwelling of the coated medical devices and for at least 12 h after that, with the supposition that the benefits will be over a longer time.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S782-S782
Author(s):  
Sailaja Puttagunta ◽  
Maya Kahan-Haanum ◽  
Sharon Kredo-Russo ◽  
Eyal Weinstock ◽  
Efrat Khabra ◽  
...  

Abstract Background The prevalence of extended-spectrum beta-lactamase (ESBL) producing and carbapenem resistant (CR) Klebsiella pneumoniae (KP) has significantly risen in all geographic regions. Infections due to these bacteria are associated with high mortality across different infection types. Even with newer options, there remains an unmet need for safe and effective therapeutic options to treat infections caused by ESBL and CR KP. Phage therapy offers a novel approach with an unprecedented and orthogonal mechanism of action for treatment of diseases caused by pathogenic bacterial strains that are insufficiently addressed by available antibiotics. Phage-based therapies confer a high strain-level specificity and have a strong intrinsic safety profile. Here we describe the identification of novel phages that can effectively target antibiotic resistant KP strains. Host range of the 21 phages on 33 strain KP panel via solid culture infectivity assays. Red marks resistance to infection while sensitivity to phage is marked in green Methods KP clinical strains were isolated from human stool specimens preserved in glycerol. Selective culturing was carried, followed by testing of individual colonies for motility, indole and urease production, sequenced and analyzed by Kleborate tool to determine antibiotic resistant genes. Natural phages were isolated from plaques that developed on susceptible bacterial targets, sequenced and characterized. Results Antibiotic-resistant KP strains encoding beta lactamase genes or a carbapenemase (n=33) were isolated from healthy individuals (n=3), and patients with inflammatory bowel disease (n=26) or primary sclerosing cholangitis (n=3). Isolates sequencing revealed bla CTX-M15 and/or bla SHV encoding strains and carbapenamase KPC-2. A panel of 21 phages targeting the beta-lactamase- and carbapenemase-producing KP strains were identified. Phage sequencing revealed that all phages belong to the Caudovirales order and include 6 Siphoviridae, 14 Myoviridae, and 1 Podoviridae. In vitro lytic activity of the phages was tested on the isolated bacteria and revealed a coverage of 70% of the 33 isolated antibiotic resistant strains, >50% of which were targeted by multiple phages. Conclusion Collectively, these results demonstrate the feasibility of identifying phage with potent activity against antibiotic resistant KP strains, and may provide a novel therapeutic approach for treatment of ESBL and CR KP infections. Disclosures All Authors: No reported disclosures


Sign in / Sign up

Export Citation Format

Share Document