scholarly journals Cationic Liposomal Sodium Stibogluconate (SSG), a Potent Therapeutic Tool for Treatment of Infection by SSG-Sensitive and -Resistant Leishmania donovani

2014 ◽  
Vol 59 (1) ◽  
pp. 344-355 ◽  
Author(s):  
Roma Sinha ◽  
Jayeeta Roychoudhury ◽  
Partha Palit ◽  
Nahid Ali

ABSTRACTPentavalent antimonials have been the first-line treatment for leishmaniasis for decades. However, the development of resistance to sodium stibogluconate (SSG) has limited its use, especially for treating visceral leishmaniasis (VL). The present work aims to optimize a cationic liposomal formulation of SSG for the treatment of both SSG-sensitive (AG83) and SSG-resistant (GE1F8R and CK1R)Leishmania donovaniinfections. Parasite killing was determined by the 3-(4,5-dimethylthiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic counting of Giemsa-stained macrophages. Macrophage uptake studies were carried out by confocal microscopic imaging. Parasite-liposome interactions were visualized through transmission electron microscopy. Toxicity tests were performed using assay kits. Organ parasite burdens were determined by microscopic counting and limiting dilution assays. Cytokines were measured by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry. Although all cationic liposomes studied demonstrated leishmanicidal activity, phosphatidylcholine (PC)-dimethyldioctadecylammonium bromide (DDAB) vesicles were most effective, followed by PC-stearylamine (SA) liposomes. Since entrapment of SSG in PC-DDAB liposomes demonstrated enhanced ultrastructural alterations in promastigotes, PC-DDAB-SSG vesicles were further investigatedin vitroandin vivo. PC-DDAB-SSG could effectively alleviate SSG-sensitive and SSG-resistantL. donovaniinfections in the liver, spleen, and bone marrow of BALB/c mice at a dose of SSG (3 mg/kg body weight) not reported previously. The parasiticidal activity of these vesicles was attributed to better interactions with the parasite membranes, resulting in direct killing, and generation of a strong host-protective environment, necessitating a very low dose of SSG for effective cures.

2004 ◽  
Vol 48 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Louis Maes ◽  
Dirk Vanden Berghe ◽  
Nils Germonprez ◽  
Ludo Quirijnen ◽  
Paul Cos ◽  
...  

ABSTRACT The in vitro and in vivo activities of a mixture of six oleane triterpene saponins, recovered from the methanolic extract of the leaves of the Vietnamese plant Maesa balansae (PX-6518), were evaluated against drug-sensitive visceral Leishmania strains. The in vitro 50% inhibitory concentration (IC50) against intracellular Leishmania infantum amastigotes was 0.04 μg/ml. The cytotoxic concentrations causing 50% cell death (CC50s) were about 1 μg/ml in murine macrophage host cells and >32 μg/ml in human fibroblasts (MRC-5 cell line). Evaluation in the Leishmania donovani BALB/c mouse model indicated that a single subcutaneous administration of 0.4 mg/kg at 1 day after infection reduced liver amastigote burdens by about 95% in all treated animals. If treatment was delayed until 14 days after infection, a dose of 1.6 mg/kg of body weight was required to maintain the same level of activity. Single 250-mg/kg doses of sodium stibogluconate (Pentostam) 1 and 14 days after infection produced comparable efficacies. A single dose of PX-6518 at 2.5 mg/kg administered 5 days before infection was still 100% effective in preventing liver infection, suggesting a particularly long residual action. Spleen and bone marrow could not be cleared by PX-6518 nor sodium stibogluconate. PX-6518 did not show activity after oral dosing at up to 200 mg/kg for 5 days. This study concludes that triterpenoid saponins from M. balansae show promising in vitro and in vivo antileishmanial potential and can be considered as new lead structures in the search for novel antileishmanial drugs.


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Shailendra Yadav ◽  
Jitendra Kuldeep ◽  
Mohammad I. Siddiqi ◽  
Neena Goyal

ABSTRACT T-complex protein-1 (TCP1) is a ubiquitous group II chaperonin and is known to fold various proteins, such as actin and tubulin. In Leishmania donovani, the γ subunit of TCP1 (LdTCP1γ) has been cloned and characterized. It forms a high-molecular-weight homo-oligomeric complex that performs ATP-dependent protein folding. In the present study, we evaluated the essentiality of the LdTCP1γ gene. Gene replacement studies indicated that LdTCP1γ is essential for parasite survival. The LdTCP1γ single-allele-replacement mutants exhibited slowed growth and decreased infectivity in mouse macrophages compared to the growth and infectivity of the wild-type parasites. Modulation of LdTCP1γ expression in promastigotes also modulated cell cycle progression. Suramin, an antitrypanosomal drug, not only inhibited the luciferase refolding activity of the recombinant LdTCP1γ (rLdTCP1γ) homo-oligomeric complex but also exhibited potential antileishmanial efficacy both in vitro and in vivo. The interaction of suramin and LdTCP1γ was further validated by isothermal titration calorimetry. The study suggests LdTCP1γ as a potential drug target and also provides a framework for the development of a new class of drugs.


2014 ◽  
Vol 59 (3) ◽  
pp. 1620-1626 ◽  
Author(s):  
Osmar N. Silva ◽  
Isabel C. M. Fensterseifer ◽  
Elaine A. Rodrigues ◽  
Hortência H. S. Holanda ◽  
Natasha R. F. Novaes ◽  
...  

ABSTRACTThe rapid increase in the incidence of multidrug-resistant infections today has led to enormous interest in antimicrobial peptides (AMPs) as suitable compounds for developing unusual antibiotics. In this study, clavanin A, an antimicrobial peptide previously isolated from the marine tunicateStyela clava, was selected as a purposeful molecule that could be used in controlling infection and further synthesized. Clavanin A wasin vitroevaluated againstStaphylococcus aureusandEscherichia colias well as toward L929 mouse fibroblasts and skin primary cells (SPCs). Moreover, this peptide was challenged here in anin vivowound and sepsis model, and the immune response was also analyzed. Despite displaying clearin vitroantimicrobial activity toward Gram-positive and -negative bacteria, clavanin A showed no cytotoxic activities against mammalian cells, and in acute toxicity tests, no adverse reaction was observed at any of the concentrations. Moreover, clavanin A significantly reduced theS. aureusCFU in an experimental wound model. This peptide also reduced the mortality of mice infected withE. coliandS. aureusby 80% compared with that of control animals (treated with phosphate-buffered saline [PBS]): these data suggest that clavanin A prevents the start of sepsis and thereby reduces mortality. These data suggest that clavanin A is an AMP that could improve the development of novel peptide-based strategies for the treatment of wound and sepsis infections.


2013 ◽  
Vol 33 (22) ◽  
pp. 4579-4593 ◽  
Author(s):  
Abhishek Aich ◽  
Chandrima Shaha

Lower eukaryotes like the kinetoplastid parasites are good models to study evolution of cellular pathways during steps to eukaryogenesis. In this study, a kinetoplastid parasite,Leishmania donovani, was used to understand the process of mitochondrial translocation of a nucleus-encoded mitochondrial protein, the mitochondrial tryparedoxin peroxidase (mTXNPx). We report the presence of an N-terminal cleavable mitochondrial targeting signal (MTS) validated through deletion and grafting experiments. We also establish a novel finding of calmodulin (CaM) binding to the MTS of mTXNPx through specific residues. Mutation of CaM binding residues, keeping intact the residues involved in mitochondrial targeting and biochemical inhibition of CaM activity bothin vitroandin vivo, prevented mitochondrial translocation. Through reconstituted import assays, we demonstrate obstruction of mitochondrial translocation either in the absence of CaM or Ca2+or in the presence of CaM inhibitors. We also demonstrate the prevention of temperature-driven mTXNPx aggregation in the presence of CaM. These findings establish the idea that CaM is required for the transport of the protein to mitochondria through maintenance of translocation competence posttranslation.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Brajendra Tiwari ◽  
Richa Pahuja ◽  
Pradeep Kumar ◽  
Srikanta Kumar Rath ◽  
Kailash Chand Gupta ◽  
...  

ABSTRACT Leishmaniasis chemotherapy remains very challenging due to high cost of the drug and its associated toxicity and drug resistance, which develops over a period of time. Combination therapies (CT) are now in use to treat many diseases, such as cancer and malaria, since it is more effective and affordable than monotherapy. CT are believed to represent a new explorable strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. In the present study, we investigated the effect of a combination of a traditional Indian medicine (ayurveda), a natural product curcumin and miltefosine, the only oral drug for visceral leishmaniasis (VL) using a Leishmania donovani-hamster model. We developed an oral nanoparticle-based formulation of curcumin. Nanoformulation of curcumin alone exhibited significant leishmanicidal activity both in vitro and in vivo. In combination with miltefosine, it exhibited a synergistic effect on both promastigotes and amastigotes under in vitro conditions. The combination of these two agents also demonstrated increased in vivo leishmanicidal activity accompanied by increased production of toxic reactive oxygen/nitrogen metabolites and enhanced phagocytic activity. The combination also exhibited increased lymphocyte proliferation. The present study thus establishes the possible use of nanocurcumin as an adjunct to antileishmanial chemotherapy.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
April C. Joice ◽  
Sihyung Yang ◽  
Abdelbasset A. Farahat ◽  
Heidi Meeds ◽  
Mei Feng ◽  
...  

ABSTRACT Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. In vitro combination studies with DB766 and antifungal azoles against intracellular Leishmania donovani showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure. In L. donovani-infected BALB/c mice, DB766-posaconazole combinations given orally for 5 days were more effective than DB766 or posaconazole alone. For example, 81% ± 1% (means ± standard errors) inhibition of liver parasite burden was observed for 37.5 mg/kg of body weight DB766 plus 15 mg/kg posaconazole, while 37.5 mg/kg DB766 and 15 mg/kg posaconazole administered as monotherapy gave 40% ± 5% and 21% ± 3% inhibition, respectively. Combination index (CI) analysis indicated that synergy or moderate synergy was observed in six of nine combined dose groups, while the other three were nearly additive. Liver concentrations of DB766 and posaconazole increased in almost all combination groups compared to monotherapy groups, although many increases were not statistically significant. For DB766-ketoconazole combinations evaluated in this model, two were antagonistic, one displayed synergy, and one was nearly additive. These data indicate that the efficacy of DB766-posaconazole and DB766-ketoconazole combinations in vivo is influenced in part by the pharmacokinetics of the combination, and that the former combination deserves further consideration in developing new treatment strategies against visceral leishmaniasis.


2011 ◽  
Vol 56 (1) ◽  
pp. 432-445 ◽  
Author(s):  
Partha Palit ◽  
Abhijit Hazra ◽  
Arindam Maity ◽  
R. S. K. Vijayan ◽  
Prabu Manoharan ◽  
...  

ABSTRACTNovel antileishmanials are urgently required to overcome emergence of drug resistance, cytotoxic effects, and difficulties in oral delivery. Toward this, we investigated a series of novel 4-aminoquinaldine derivatives, a new class of molecules, as potential antileishmanials. 4-Aminoquinaldine derivatives presented inhibitory effects onL. donovanipromastigotes and amastigotes (50% inhibitory concentration range, 0.94 to 127 μM). Of these, PP-9 and PP-10 were the most effectivein vitroand demonstrated strong efficaciesin vivothrough the intraperitoneal route. They were also found to be effective against both sodium antimony gluconate-sensitive and -resistantLeishmania donovanistrains in BALB/c mice when treated orally, resulting in more than 95% protection. Investigation of their mode of action revealed that killing by PP-10 involved moderate inhibition of dihydrofolate reductase and elicitation of the apoptotic cascade. Our studies implicate that PP-10 augments reactive oxygen species generation, evidenced from decreased glutathione levels and increased lipid peroxidation. Subsequent disruption ofLeishmaniapromastigote mitochondrial membrane potential and activation of cytosolic proteases initiated the apoptotic pathway, resulting in DNA fragmentation and parasite death. Our results demonstrate that PP-9 and PP-10 are promising lead compounds with the potential for treating visceral leishmaniasis (VL) through the oral route.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Angela Maria Arenas Velásquez ◽  
Willian Campos Ribeiro ◽  
Vutey Venn ◽  
Silvia Castelli ◽  
Mariana Santoro de Camargo ◽  
...  

ABSTRACT Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the Leishmania genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent. We report here the evaluation of a binuclear cyclopalladated complex containing Pd(II) and N,N′-dimethylbenzylamine (Hdmba) against Leishmania amazonensis. The compound [Pd(dmba)(μ-N3)]2 (CP2) inhibits promastigote growth (50% inhibitory concentration [IC50] = 13.2 ± 0.7 μM) and decreases the proliferation of intracellular amastigotes in in vitro incubated macrophages (IC50 = 10.2 ± 2.2 μM) without a cytotoxic effect when tested against peritoneal macrophages (50% cytotoxic concentration = 506.0 ± 10.7 μM). In addition, CP2 was also active against T. cruzi intracellular amastigotes (IC50 = 2.3 ± 0.5 μM, selective index = 225), an indication of its potential for use in Chagas disease therapy. In vivo assays using L. amazonensis-infected BALB/c showed an 80% reduction in parasite load compared to infected and nontreated animals. Also, compared to amphotericin B treatment, CP2 did not show any side effects, which was corroborated by the analysis of plasma levels of different hepatic and renal biomarkers. Furthermore, CP2 was able to inhibit Leishmania donovani topoisomerase 1B (Ldtopo1B), a potentially important target in this parasite. (This study has been registered at ClinicalTrials.gov under identifier NCT02169141.)


2013 ◽  
Vol 57 (4) ◽  
pp. 1714-1722 ◽  
Author(s):  
Shalini Asthana ◽  
Anil K. Jaiswal ◽  
Pramod K. Gupta ◽  
Vivek K. Pawar ◽  
Anuradha Dube ◽  
...  

ABSTRACTThe accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stabilityin vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results ofin vitro(macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) andin vivo(Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.


2001 ◽  
Vol 45 (12) ◽  
pp. 3555-3559 ◽  
Author(s):  
K. C. Carter ◽  
A. B. Mullen ◽  
S. Sundar ◽  
R. T. Kenney

ABSTRACT In this study, the in vitro and in vivo efficacies of free sodium stibogluconate (SSG) and a nonionic surfactant vesicular formulation of SSG (SSG-NIV) against a laboratory strain ofLeishmania donovani (MHOM/ET/67:LV82) and different clinical isolates of L. donovani were determined. Treatment with SSG-NIV was more effective against intramacrophage amastigotes than treatment with SSG. In vivo murine studies showed that there was interstrain variability in the infectivity of the different L. donovani strains, with two of the strains (20001 and 20003) giving low parasite burdens. In addition, interstrain variability in the antileishmanial efficacy of SSG in a single dose containing 300 mg of Sb(V)/kg of body weight was observed. This dose of free drug either caused a >97% reduction in liver parasite burdens or had no significant effect on parasite burdens compared with the result with the respective control. In some instances, treatment with this free SSG dose also caused a significant reduction in spleen (strain 20006) or bone marrow (strains 20001 and 20009) parasite burdens. Treatment with SSG-NIV was more effective than that with SSG against all of the strains tested. In SSG-responsive strains, the reduction in liver parasite burdens by SSG-NIV treatment was similar to that caused by free SSG. In SSG-nonresponsive strains, SSG-NIV treatment caused at least a 95% reduction in liver parasite burdens. Overall, these results indicate that the use of a vesicular formulation of SSG is likely to increase its clinical efficacy against visceral leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document