scholarly journals Assessment of two penicillins plus beta-lactamase inhibitors versus cefotaxime in treatment of murine Klebsiella pneumoniae infections.

1996 ◽  
Vol 40 (2) ◽  
pp. 325-330 ◽  
Author(s):  
J L Fournier ◽  
F Ramisse ◽  
A C Jacolot ◽  
M Szatanik ◽  
O J Petitjean ◽  
...  

The in vivo efficacies of piperacillin, piperacillin plus tazobactam, ticarcillin, ticarcillin plus clavulanic acid, piperacillin plus clavulanic acid, and cefotaxime were compared in a mouse model of pneumonia induced by the SHV-1 beta-lactamase-producer Klebsiella pneumoniae. Each antibiotic was injected either once intraperitoneally at 24 h postinfection or at repeated times during 24 h. The efficacies of the drugs and therapeutic protocols were assessed by counting viable bacteria recovered from the lungs of mice sacrificed at selected times. No emergence of beta-lactam-resistant organisms was detected. Ticarcillin at 300 mg/kg was ineffective. Repeated injections of piperacillin at 300 mg/kg, either alone or in combination with tazobactam (8:1), led to a significant decrease in bacterial counts, but this was followed by bacterial regrowth. The pharmacokinetic analysis demonstrated that this short-lasting antibacterial effect was not due to a failure of piperacillin and/or tazobactam to penetrate the lungs. The combinations of ticarcillin at 300 mg/kg plus clavulanic acid (15:1) and piperacillin at 300 mg/kg plus tazobactam (4:1) were proven to be effective in that they decreased the bacterial burden in the lungs from 10(5) to < 10(3) CFU. This dose effect of tazobactam can be explained by its dose-dependent penetration in the lungs. Cefotaxime at 100 mg/kg and the combination of piperacillin (slightly hydrolyzed by SHV-1) at 300 mg/kg plus clavulanic acid (15:1) led to the best efficacy. Both of these treatments induced a decrease in bacterial counts of nearly 4 log10 units. The survival rates correlated with the quantitative measurements of in vivo bacterial killing. These experimental results obtained from the restricted animal model used here may help in the design of further protocols for clinical trials.

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Mojgan Sabet ◽  
Ziad Tarazi ◽  
David C. Griffith

ABSTRACT Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Norihito Kaku ◽  
Kosuke Kosai ◽  
Kazuaki Takeda ◽  
Naoki Uno ◽  
Yoshitomo Morinaga ◽  
...  

ABSTRACT OP0595 (RG6080) is a novel diazabicyclooctane that inhibits class A and C serine beta-lactamases. Although the combination of OP0595 and cefepime (FEP) showed good in vitro activity against extended-spectrum-beta-lactamase (ESBL)-producing pathogens, the effect of the combination therapy against severe infections, such as pneumonia or bacteremia, remains unknown in vivo. In this study, we investigated the efficacy and pharmacokinetics of the combination therapy of OP0595 and FEP in a mouse model of pneumonia caused by Klebsiella pneumoniae harboring SHV- and CTX-M-9-type ESBLs. The infected BALB/c mice were intraperitoneally administered saline (control), 100 mg/kg of body weight of FEP, 20 mg/kg of OP0595, or both FEP and OP0595, twice a day. The MIC of FEP against the bacteria was 8 mg/liter and markedly improved to 0.06 mg/liter with the addition of 0.5 mg/ml of OP0595. In the survival study, the combination of FEP and OP0595 significantly improved the survival rate compared with that reported with either OP0595 or FEP alone (P < 0.001). The number of bacteria in the lungs and blood significantly decreased in the combination therapy group compared to that reported for the monotherapy groups (P < 0.001). In addition, the in vivo effect depended on the dose of FEP. However, pharmacokinetic analysis revealed that the percentage of time above MIC remained constant when increasing the dose of FEP in combination with 20 mg/kg of OP0595. The results of our study demonstrated the in vivo effectiveness of the combination of OP0595 and FEP.


2019 ◽  
Vol 104 (6) ◽  
pp. e37.2-e37
Author(s):  
FM Keij ◽  
RF Kornelisse ◽  
NG Hartwig ◽  
J van der Sluijs ◽  
A van Driel ◽  
...  

BackgroundClavulanic acid is an irreversible beta-lactamase inhibitor which has a weak antibacterial action. When combined with a beta-lactam antibiotic such as amoxicillin, it is effective against a broad range of bacteria. Despite its widespread use, little is known on the mechanism of action and target levels. A few studies on oral clavulanic acid in adults are available reporting great variance (AUC median 4.99 mg·h/L [0.44–8.31])1 and a short elimination half-time (1.08h).2 Observations in neonates are currently lacking. We therefore evaluated the pharmacokinetics of oral clavulanic acid co-administered with amoxicillin in term newborns.MethodsAs part of a multicenter RCT (Clinicaltrials.gov:NCT03247920) evaluating neonatal intravenous-to-oral switch therapy in probable bacterial infection, we measured serum levels in patients allocated to the intervention group. They switched to amoxicillin/clavulanic acid suspension (25/6.25 mg/kg tid), after 48 hours of intravenous penicillin/gentamicin. Two blood samples from different dosing intervals, were obtained and directly stored at -80°C. Initially, and to ensure that amoxicillin levels were attained as safety marker, levels in the second part of the timeframe (4–8 h after administration) were collected. For the second batch, peak levels (1–2 h after administration) were collected. Analysis was performed using Liquid Chromatography and Mass Spectrometry.ResultsAt submission, samples of the first 15 patients were analysed (first batch). Samples were collected 6.0 ± 1.3 h (mean,S.D.) after antibiotic administration. Clavulanic acid levels were detected in all patients but a great variance was observed (median: 1.4 mg/L; range: 0.20–4.82 mg/L). Extrapolation would lead to an AUC of at least 8.4 mg·h/L.ConclusionsOral clavulanic acid is absorbed in term newborns, but great variance is seen in trough levels (4–8 h after administration). Extrapolation predicts at least an AUC comparable to those of adults. Peak levels in the first part of the time interval (0–4h) are needed to further build confidence on this conclusion.ReferencesDe Velde F, De Winter BCM, Koch BCP, Van Gelder T, Mouton JW, Consortium C-N. Highly variable absorption of clavulanic acid during the day: a population pharmacokinetic analysis. J Antimicrob Chemother. 2018;73(2):469–76.Vree TB, Dammers E, Exler PS. Identical pattern of highly variable absorption of clavulanic acid from four different oral formulations of co-amoxiclav in healthy subjects. J Antimicrob Chemother 2003;51(2):373–8.Disclosure(s)Nothing to disclose


2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Su Mon Aye ◽  
Irene Galani ◽  
Heidi Yu ◽  
Jiping Wang ◽  
Ke Chen ◽  
...  

ABSTRACT Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae. Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.


1996 ◽  
Vol 30 (10) ◽  
pp. 1130-1140 ◽  
Author(s):  
Susan M. Hart ◽  
Elaine M. Bailey

OBJECTIVE: To aid clinicians in developing an approach to the use of intravenous beta-lactam/beta-lactamase inhibitors on a patient-specific basis. To achieve this, the pharmacology, in vitro activity, and clinical use of the intravenous beta-lactam/beta-lactamase inhibitor combinations in the treatment of selected infections seen in hospitalized patients are discussed. DATA IDENTIFICATION: An English-language literature search using MEDLINE (1987–1995); Index Medicus (1987–1995); program and abstracts of the 32nd (1992), 33rd (1993), 34th (1994), and 35th (1995) Interscience Conference on Antimicrobial Agents and Chemotherapy; bibliographic reviews of review articles; and package inserts. STUDY SELECTION: In vitro and in vivo studies on the pharmacokinetics, microbiology, pharmacology, and clinical effectiveness of ampicillin/sulbactam, ticarcillin/clavulanate, and piperacillin/tazobactam were evaluated. DATA SYNTHESIS: Many properties of the beta-lactam/beta-lactamase inhibitor combinations are similar. Differences in dosing, susceptibilities, and clinical applications are important considerations for clinicians. Potential roles for these agents in the clinical setting include pneumonia, intraabdominal infections, and soft tissue infections. A short discussion on susceptibility data interpretation is also presented. CONCLUSIONS: There are important differences among the available beta-lactam/beta-lactamase inhibitor combinations, such as spectra of activity, which need to be considered in choosing an agent for a patient-specific case. These products can be useful alternatives to conventional two- to three-drug regimens in mixed infections such as foot infections in patients with diabetes and hospital-acquired intraabdominal infections.


2009 ◽  
Vol 54 (3) ◽  
pp. 1354-1357 ◽  
Author(s):  
Iraida E. Robledo ◽  
Edna E. Aquino ◽  
María I. Santé ◽  
Jorge L. Santana ◽  
Diana M. Otero ◽  
...  

ABSTRACT During an island-wide PCR-based surveillance study of beta-lactam resistance in multidrug-resistant (MDR) Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus-baumannii complex isolates obtained from 17 different hospitals, 10 KPC-positive Acinetobacter isolates were identified. DNA sequencing of the bla KPC gene identified KPC-2, -3, and -4 and a novel variant, KPC-10. This is the first report of a KPC-type beta-lactamase identified in Acinetobacter species.


1996 ◽  
Vol 40 (3) ◽  
pp. 734-738 ◽  
Author(s):  
A A Firsov ◽  
D Saverino ◽  
D Savarino ◽  
M Ruble ◽  
D Gilbert ◽  
...  

The clinical outcome in patients treated with ampicillin-sulbactam may not always be predictable by disc susceptibility testing or with the MIC as determined with a constant level (4 micrograms/ml) of the beta-lactamase inhibitor (MIC1). The enzyme activities (EA) and the MICs estimated at a constant ratio of ampicillin to sulbactam of 2:1 (MIC2) for 15 TEM-1 beta-lactamase-producing strains of Escherichia coli were examined as alternatives to MIC1 as predictors of the antibacterial effects of this combined drug as studied in an in vitro model which simulates ampicillin-sulbactam pharmacokinetic profiles observed in human peripheral tissues. Integral parameters describing the area under the bacterial count-time curve (AUBC), the area between the normal growth curve, and the killing curve of bacteria exposed to antibiotic (ABBC), and the second parameter expressed as a percentage of its maximal hypothetical value (ABBC/ABBCmax) were calculated. All three parameters correlated well with EA (AUBC, r = 0.93; ABBC, r = -0.88; ABBC/ABBCmax, r = -0.91) and with MIC2 (r = 0.94, -0.94, and -0.95, respectively) but not with MIC1. Both EA and MIC2 can be considered reliable predictors of the antibacterial effect of ampicillin-sulbactam in an in vitro model. These correlations suggest that in vitro kinetic-dynamic models might be useful to reexamine established susceptibility breakpoints obtained with data based on the MIC1 (MICs obtained with constant levels of beta-lactamase inhibitors). These data also suggest that quantitative determinations of bacterial beta-lactamase production and MICs based on the component concentration ratio observed in vivo might be useful predictors of the effect of ampicillin-sulbactam and other beta-lactam-inhibitor combinations.


1997 ◽  
Vol 41 (5) ◽  
pp. 1053-1057 ◽  
Author(s):  
C Thauvin-Eliopoulos ◽  
M F Tripodi ◽  
R C Moellering ◽  
G M Eliopoulos

The in vivo activities of piperacillin-tazobactam and cefepime were compared with those of ticarcillin-clavulanate, ceftazidime, cefotaxime, and imipenem in a rat model of intra-abdominal abscess with a strain of Klebsiella pneumoniae elaborating an extended-spectrum beta-lactamase (TEM-26). With the exception of ceftazidime, all of the antimicrobial agents significantly reduced bacterial counts within abscesses at the end of therapy compared with those in untreated controls. Residual viable cell counts (mean +/- standard deviation in log10 CFU/gram) were as follows: control, 8.76 +/- 0.97; ceftazidime, 8.00 +/- 0.76; piperacillin-tazobactam, 3.87 +/- 1.72; ticarcillin-clavulanate, 3.74 +/- 1.34; cefepime, 3.15 +/- 1.19; cefotaxime, 2.61 +/- 0.77; imipenem, 2.41 +/- 0.93. Imipenem was more effective than either of the inhibitor combinations (P < 0.05). Cefotaxime was unexpectedly effective given its poor in vivo activity against this organism in our earlier studies, which used a different dose and total duration of therapy (L. B. Rice, J. D. C. Yao, K. Klimm, G. M. Eliopoulos, and R. C. Moellering, Jr., Antimicrob. Agents Chemother. 35:1243-1244, 1991). These observations suggest that the effectiveness of cephalosporins in the treatment of experimental infections caused by extended-spectrum beta-lactamase-producing K. pneumoniae may be highly dependent on dosing regimens, even for a specific organism and site of infection.


Sign in / Sign up

Export Citation Format

Share Document