A Practical Look at the Clinical Usefulness of the Beta-Lactam/Beta-Lactamase Inhibitor Combinations

1996 ◽  
Vol 30 (10) ◽  
pp. 1130-1140 ◽  
Author(s):  
Susan M. Hart ◽  
Elaine M. Bailey

OBJECTIVE: To aid clinicians in developing an approach to the use of intravenous beta-lactam/beta-lactamase inhibitors on a patient-specific basis. To achieve this, the pharmacology, in vitro activity, and clinical use of the intravenous beta-lactam/beta-lactamase inhibitor combinations in the treatment of selected infections seen in hospitalized patients are discussed. DATA IDENTIFICATION: An English-language literature search using MEDLINE (1987–1995); Index Medicus (1987–1995); program and abstracts of the 32nd (1992), 33rd (1993), 34th (1994), and 35th (1995) Interscience Conference on Antimicrobial Agents and Chemotherapy; bibliographic reviews of review articles; and package inserts. STUDY SELECTION: In vitro and in vivo studies on the pharmacokinetics, microbiology, pharmacology, and clinical effectiveness of ampicillin/sulbactam, ticarcillin/clavulanate, and piperacillin/tazobactam were evaluated. DATA SYNTHESIS: Many properties of the beta-lactam/beta-lactamase inhibitor combinations are similar. Differences in dosing, susceptibilities, and clinical applications are important considerations for clinicians. Potential roles for these agents in the clinical setting include pneumonia, intraabdominal infections, and soft tissue infections. A short discussion on susceptibility data interpretation is also presented. CONCLUSIONS: There are important differences among the available beta-lactam/beta-lactamase inhibitor combinations, such as spectra of activity, which need to be considered in choosing an agent for a patient-specific case. These products can be useful alternatives to conventional two- to three-drug regimens in mixed infections such as foot infections in patients with diabetes and hospital-acquired intraabdominal infections.

1997 ◽  
Vol 41 (4) ◽  
pp. 721-727 ◽  
Author(s):  
P D Lister ◽  
A M Prevan ◽  
C C Sanders

An in vitro pharmacokinetic model was used to study the pharmacodynamics of piperacillin-tazobactam and piperacillin-sulbactam against gram-negative bacilli producing plasmid-encoded beta-lactamases. Logarithmic-phase cultures were exposed to peak antibiotic concentrations observed in human serum after the administration of intravenous doses of 3 g of piperacillin and 0.375 g of tazobactam or 0.5 g of sulbactam. Piperacillin and inhibitor were either dosed simultaneously or piperacillin was dosed sequentially 0.5 h after dosing with the inhibitor. In studies with all four test strains, the pharmacodynamics observed after simultaneous dosing were similar to those observed with the sequential regimen. Since the ratio between piperacillin and tazobactam was in constant fluctuation after sequential dosing, these data suggest that the pharmacodynamics of the piperacillin-inhibitor combinations were not dependent upon maintenance of a critical ratio between the components. Furthermore, when regrowth was observed, the time at which bacterial counts began to increase was similar between the simultaneous and sequential dosing regimens. Since the pharmacokinetics of the inhibitors were the same for all regimens, these data suggest that the length of time that the antibacterial activity was maintained over the dosing interval with these combinations was dictated by the pharmacokinetics of the beta-lactamase inhibitor in the combination. The antibacterial activity of the combination appeared to be lost when the amount of inhibitor available fell below some critical concentration. This critical concentration varied depending upon the type and amount of enzyme produced, as well as the specific inhibitor used. These results indicate that the antibacterial activity of drug-inhibitor combinations, when dosed at their currently recommended ratios, is more dependent on the pharmacokinetics of the inhibitor than on those of the beta-lactam drug.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Cynthia St. Hilaire ◽  
Hui Jin ◽  
Yuting Huang ◽  
Dan Yang ◽  
Alejandra Negro ◽  
...  

Objective: The objective of this study was to develop a patient-specific induced pluripotent stem cell (iPSC)-based disease model to understand the process by which CD73-deficiency leads to vascular calcification in the disease, Arterial Calcification due to Deficiency of CD73 (ACDC). Approach & Results: ACDC is an autosomal recessive disease resulting from mutations in the gene encoding for CD73, which converts extracellular AMP to adenosine. CD73-deficiency manifests with tortuosity and vascular calcification of the medial layer of lower-extremity arteries, a pathology associated with diabetes and chronic kidney disease. We previously identified that dermal fibroblasts isolated from ACDC patients calcify in vitro, however in vivo studies of the vasculature are limited, as murine models of CD73 deficiency do not recapitulate the human disease phenotype. Thus, we created iPSCs from ACDC patients and control fibroblasts. ACDC and Control iPSCs form teratomas when injected in immune-compromised mice, however ACDC iPSC teratomas exhibit extensive calcifications. Control and ACDC iPSCs were differentiated down the mesenchymal lineage (MSC) and while there was no difference in chondrogenesis and adipogenesis, ACDC iMSCs underwent osteogenesis sooner than control iPSC, have higher activity of tissue-nonspecific alkaline phosphatase (TNAP), and lower levels of extracellular adenosine. During osteogenic simulation, TNAP activity in ACDC cells significantly increased adenosine levels, however, not to levels needed for functional compensatory stimulation of the adenosine receptors. Inhibition of TNAP with levimisole ablates this increase in adenosine. Treatment with an A2b adenosine receptor (AR) agonist drastically reduced TNAP activity in vitro, and calcification in ACDC teratomas, as did treatment with etidronate, which is currently being tested in a clinical trial on ACDC patients. Conclusions: These results illustrate a pro-osteogenic phenotype in CD73-deficient cells whereby TNAP activity attempts to compensate for CD73 deficiency, but subsequently induces calcification that can be reversed by activation of the A2bAR. The iPSC teratoma model may be used to screen other potential therapeutics for calcification disorders.


2020 ◽  
Vol 9 ◽  
pp. 1743
Author(s):  
Solmaz Rahmani Barouji ◽  
Amir Saber ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

raditional medicine (TM) that developed over the years within various societies consists of medical experimental knowledge and practices, which apply natural methods and compounds for general wellness and healing. Moomiaii as a pale-brown to blackish-brown natural exudate is one of the natural compounds in traditional medicine that has been used over 3000 years in many countries of the world especially in India, China, Russia, Iran, Mongolia, Kazakhstan and Kirgizstan. We reviewed all English-language studies about Moomiaii that we accessed them. In traditional medicine, many beneficial activities have been attributed to Moomiaii and to its main constituents, Humic acid and Fulvic acid, which are widely used to prevent and treatment of different diseases. Some modern scientific investigations showed that Moomiaii as a safe dietary supplement can be beneficial in various health complications. Even though the beneficial effects of Moomiaii have been confirmed in traditional and modern medicine, it seems that additional in-vitro/in-vivo studies and comprehensive clinical trials are necessary to explain the whole mechanisms of action and to determine the effective doses in various diseases. We discuss and clarify the claimed health beneficial effects of Moomiaii in some wide-spread diseases regarding its anti-ulcerogenic, immunomodulatory, antidiabetic, antioxidative and anticancer properties. [GMJ.2020;9:e1743]


1999 ◽  
Vol 12 (4) ◽  
pp. 564-582 ◽  
Author(s):  
Marjorie Murphy Cowan

SUMMARY The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.


2019 ◽  
Vol 7 (9) ◽  
pp. 278 ◽  
Author(s):  
Lorenzo

The advent of multidrug resistance among pathogenic bacteria is devastating the worth of antibiotics and changing the way of their administration, as well as the approach to use new or old drugs. The crisis of antimicrobial resistance is also due to the unavailability of newer drugs, attributable to exigent regulatory requirements and reduced financial inducements. The emerging resistance to antibiotics worldwide has led to renewed interest in old drugs that have fallen into disuse because of toxic side effects. Thus, comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms and optimize the use of old antimicrobial agents able to maintain their profile of susceptibility. Chloramphenicol is experiencing its renaissance because it is widely used in the treatment and prevention of superficial eye infections due to its broad spectrum of activity and other useful antimicrobial peculiarities, such as the antibiofilm properties. Concerns have been raised in the past for the risk of aplastic anemia when chloramphenicol is given intravenously. Chloramphenicol seems suitable to be used as topical eye formulation for the limited rate of resistance compared to fluoroquinolones, for its scarce induction of bacterial resistance and antibiofilm activity, and for the hypothetical low impact on ocular microbiota disturbance. Further in-vitro and in vivo studies on pharmacodynamics properties of ocular formulation of chloramphenicol, as well as its real impact against biofilm and the ocular microbiota, need to be better addressed in the near future.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
Kerin L. Tyrrell ◽  
Eliza Leoncio ◽  
C. Vreni Merriam

ABSTRACT Relebactam is an important beta-lactamase inhibitor for certain aerobic organisms, but alone it has no antianaerobic activity, with most anaerobes having MICs of ≥32 μg/ml with the exception of a very few strains. There was no enhancement or antagonism of imipenem activity with the addition of relebactam, including activity against imipenem-resistant strains. The relebactam-imipenem combination had excellent overall activity against the anaerobes tested.


Author(s):  
Olga Lomovskaya ◽  
Debora Rubio-Aparicio ◽  
Kirk Nelson ◽  
Dongxu Sun ◽  
Ruslan Tsivkovski ◽  
...  

QPX7728 is an ultra-broad-spectrum beta-lactamase inhibitor with potent inhibition of key serine and metallo beta-lactamases. QPX7728 enhances the potency of multiple beta-lactams in beta-lactamase producing Enterobacterales and Acinetobacter spp. In this study we evaluated the in vitro activity of QPX7728 (8 μg/ml) combined with multiple beta-lactams against clinical isolates of Pseudomonas aeruginosa with varying beta-lactam resistance mechanisms. Seven-hundred-ninety clinical isolates were included in this study; 500 isolates, termed a “representative panel”, were selected to be representative the MIC distribution of meropenem (MEM), ceftazidime-avibactam (CAZ-AVI), and ceftolozane-tazobactam (TOL-TAZ) resistance for clinical isolates according to 2017 SENTRY surveillance data (representative panel). An additional 290 selected isolates (“challenge panel”), that were either non-susceptible to MEM or were resistant to TOL-TAZ or CAZ-AVI were also tested; 61 strains carried metallo beta-lactamases (MBLs), 211 strains were defective in the carbapenem porin OprD and 185 strains had the MexAB-OprM efflux pump overproduced based on a phenotypic test. Against the representative panel, susceptibility for all QPX7728/beta-lactam combinations was >90%. For the challenge panel, QPX-ceftolozane (TOL) was the most active combination (78.6% susceptible) followed by equipotent QPX-piperacillin (PIP) and QPX-cefepime (FEP), restoring susceptibility in 70.3% of strains (CLSI breakpoints for the beta-lactam compound alone). For MBL-negative strains, QPX-TOL and QPX-FEP restored the MIC values to susceptibility rates in ∼90% and ∼80% of strains, respectively, vs 68-70% for QPX-MEM and QPX-PIP and 63-65% for TOL-TAZ and CAZ-AVI. For MBL-positive strains, QPX-PIP restored the MIC to susceptibility values for ∼70% of strains vs 2-40% for other combinations. Increased efflux and impaired OprD had varying effect on QPX7728 combination depending on the partner beta-lactam tested. QPX7728 enhanced the potency of multiple beta-lactams against P. aeruginosa, with varying results according to the beta-lactamase production and other intrinsic resistance mechanisms.


1996 ◽  
Vol 40 (3) ◽  
pp. 734-738 ◽  
Author(s):  
A A Firsov ◽  
D Saverino ◽  
D Savarino ◽  
M Ruble ◽  
D Gilbert ◽  
...  

The clinical outcome in patients treated with ampicillin-sulbactam may not always be predictable by disc susceptibility testing or with the MIC as determined with a constant level (4 micrograms/ml) of the beta-lactamase inhibitor (MIC1). The enzyme activities (EA) and the MICs estimated at a constant ratio of ampicillin to sulbactam of 2:1 (MIC2) for 15 TEM-1 beta-lactamase-producing strains of Escherichia coli were examined as alternatives to MIC1 as predictors of the antibacterial effects of this combined drug as studied in an in vitro model which simulates ampicillin-sulbactam pharmacokinetic profiles observed in human peripheral tissues. Integral parameters describing the area under the bacterial count-time curve (AUBC), the area between the normal growth curve, and the killing curve of bacteria exposed to antibiotic (ABBC), and the second parameter expressed as a percentage of its maximal hypothetical value (ABBC/ABBCmax) were calculated. All three parameters correlated well with EA (AUBC, r = 0.93; ABBC, r = -0.88; ABBC/ABBCmax, r = -0.91) and with MIC2 (r = 0.94, -0.94, and -0.95, respectively) but not with MIC1. Both EA and MIC2 can be considered reliable predictors of the antibacterial effect of ampicillin-sulbactam in an in vitro model. These correlations suggest that in vitro kinetic-dynamic models might be useful to reexamine established susceptibility breakpoints obtained with data based on the MIC1 (MICs obtained with constant levels of beta-lactamase inhibitors). These data also suggest that quantitative determinations of bacterial beta-lactamase production and MICs based on the component concentration ratio observed in vivo might be useful predictors of the effect of ampicillin-sulbactam and other beta-lactam-inhibitor combinations.


Sign in / Sign up

Export Citation Format

Share Document