Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3')-IIb, in Pseudomonas aeruginosa.

1996 ◽  
Vol 40 (5) ◽  
pp. 1254-1256 ◽  
Author(s):  
H Hächler ◽  
P Santanam ◽  
F H Kayser

A novel, probably chromosomally encoded, aminoglycoside phosphotransferase gene was cloned on a 2,996-bp PstI fragment from Pseudomonas aeruginosa and designated aph (3')-IIb. It coded for a protein of 268 amino acids that showed 51.7% amino acid identity with APH (3')-II [APH(3') is aminoglycoside-3' phosphotransferase] from Tn5. Two other open reading frames on the cloned fragment showed homology to a signal-transducing system in P. aeruginosa.

1998 ◽  
Vol 42 (8) ◽  
pp. 2074-2083 ◽  
Author(s):  
Thierry Naas ◽  
Wladimir Sougakoff ◽  
Anne Casetta ◽  
Patrice Nordmann

ABSTRACT The Pseudomonas aeruginosa Mus clinical isolate produces OXA-18, a pI 5.5 class D extended-spectrum β-lactamase totally inhibited by clavulanic acid (L. N. Philippon, T. Naas, A.-T. Bouthors, V. Barakett, and P. Nordmann, Antimicrob. Agents Chemother. 41:2188–2195, 1997). A second β-lactamase was cloned, and the recombinant Escherichia coli clone pPL10 expressed a pI 7.4 β-lactamase which conferred high levels of amoxicillin and ticarcillin resistance and which was partially inhibited by clavulanic acid. The 2.5-kb insert from pPL10 was sequenced, and a 266-amino-acid protein (OXA-20) was deduced; this protein has low amino acid identity with most of the class D β-lactamases except OXA-2, OXA-15, and OXA-3 (75% amino acid identity with each). OXA-20 is a restricted-spectrum oxacillinase and is unusually inhibited by clavulanic acid. OXA-20 is a peculiar β-lactamase because its translation initiates with a TTG (leucine) codon, which is rarely used as a translational origin in bacteria. Exploration of the genetic environment of oxa20revealed the presence of the following integron features: (i) a second antibiotic resistance gene, aacA4; (ii) anintI1 gene; and (iii) two 59-base elements, each associated with either oxa20 or aacA4. This integron is peculiar because it lacks the 3′ conserved region, and therefore is not a sul1-associated integron like most of them, and because its 3′ end is located within tnpR, a gene involved in the transposition of Tn5393, a gram-negative transposon.P. aeruginosa Mus produces two novel and unrelated oxacillinases, OXA-18 and OXA-20, both of which are inhibited by clavulanic acid.


2005 ◽  
Vol 86 (4) ◽  
pp. 929-943 ◽  
Author(s):  
Jondavid G. de Jong ◽  
Hilary A. M. Lauzon ◽  
Cliff Dominy ◽  
Arkadi Poloumienko ◽  
Eric B. Carstens ◽  
...  

The double-stranded DNA genome of Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) was sequenced and analysed in the context of other group I nucleopolyhedroviruses (NPVs). The genome consists of 129 593 bp with a G+C content of 50·1 mol%. A total of 146 open reading frames (ORFs) of greater than 150 bp, and with no or minimal overlap were identified. In addition, five homologous regions were identified containing 7–10 repeats of a 36 bp imperfect palindromic core. Comparison with other completely sequenced baculovirus genomes revealed that 139 of the CfMNPV ORFs have homologues in at least one other baculovirus and seven ORFs are unique to CfMNPV. Of the 117 CfMNPV ORFs common to all group I NPVs, 12 are exclusive to group I NPVs. Overall, CfMNPV is most similar to Orgyia pseudotsugata MNPV based on gene content, arrangement and overall amino acid identity. Unlike other group I baculoviruses, however, CfMNPV encodes a viral enhancing factor (vef) and has two copies of p26.


2001 ◽  
Vol 45 (4) ◽  
pp. 1249-1253 ◽  
Author(s):  
Maria Letizia Riccio ◽  
Lucia Pallecchi ◽  
Roberta Fontana ◽  
Gian Maria Rossolini

ABSTRACT An Achromobacter xylosoxydans strain showing broad-spectrum resistance to β-lactams (including carbapenems) and aminoglycosides was isolated at the University Hospital of Verona (Verona, Italy). This strain was found to produce metallo-β-lactamase activity and to harbor a 30-kb nonconjugative plasmid, named pAX22, carrying abla VIM-1 determinant inserted into a class 1 integron. Characterization of this integron, named In70, revealed an original array of four gene cassettes containing, respectively, thebla VIM-1 gene and three different aminoglycoside resistance determinants, including an aacA4allele, a new aph-like gene named aphA15, and an aadA1 allele. The aphA15 gene is the first example of an aph-like gene carried on a mobile gene cassette, and its product exhibits close similarity to the APH(3′)-IIa aminoglycoside phosphotransferase encoded by Tn5 (36% amino acid identity) and to an APH(3′)-IIb enzyme fromPseudomonas aeruginosa (38% amino acid identity). Expression of the cloned aphA15 gene in Escherichia coli reduced the susceptibility to kanamycin and neomycin as well as (slightly) to amikacin, netilmicin, and streptomycin. Characterization of the 5′ and 3′ conserved segments of In70 and of their flanking regions showed that In70 belongs to the group of class 1 integrons associated with defective transposon derivatives originating from Tn402-like elements. The structure of the 3′ conserved segment indicates the closest ancestry with members of the In0-In2 lineage. In70, with its array of cassette-borne resistance genes, can mediate broad-spectrum resistance to most β-lactams and aminoglycosides.


2003 ◽  
Vol 16 (10) ◽  
pp. 926-935 ◽  
Author(s):  
Anna-Liisa Fabritius ◽  
Howard S. Judelson

Five members of an elicitor-like gene family from Phytophthora infestans were examined. The family was identified through the analysis of M81, a mating-induced gene. The predicted M81 product resembled a 42-kDa P. sojae glycoprotein known to elicit defense reactions in plants, including a host of P. infestans, potato. M81 was the most structurally and functionally divergent of the P. infestans genes compared with the P. sojae sequence. M81 lacked elicitor activity, had the lowest protein identity (47%), displayed mating-specific transcription, and had a novel C-terminal domain. The latter contained a 30-residue proline- and threonine-rich motif, which, remarkably, was tandemly repeated 24 to 36 times in different alleles. M81C, M81D, and M81E better resembled the P. sojae protein based on amino acid identity (63 to 75%) and conserved elicitor activity. M81C and M81D mRNA accumulated only during zoosporogenesis, while M81E expression was restricted to hyphae. M81B, an apparent pseudogene, was physically linked to M81. The protein products of each gene were predicted to be extracellular transglutaminases ranging in size from 436 to 1,607 amino acids. Genes with an elicitor, proline- and threonine-rich repeat, and both elicitor and repeat domains were widely distributed throughout Phytophthora infestans. These findings help explain the natural functions of elicitors in pathogen biology and plant-microbe interactions.


2002 ◽  
Vol 184 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Markus Göbel ◽  
Kerstin Kassel-Cati ◽  
Eberhard Schmidt ◽  
Walter Reineke

ABSTRACT 3-Oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase carry out the ultimate steps in the conversion of benzoate and 3-chlorobenzoate to tricarboxylic acid cycle intermediates in bacteria utilizing the 3-oxoadipate pathway. This report describes the characterization of DNA fragments with the overall length of 5.9 kb from Pseudomonas sp. strain B13 that encode these enzymes. DNA sequence analysis revealed five open reading frames (ORFs) plus an incomplete one. ORF1, of unknown function, has a length of 414 bp. ORF2 (catI) encodes a polypeptide of 282 amino acids and starts at nucleotide 813. ORF3 (catJ) encodes a polypeptide of 260 amino acids and begins at nucleotide 1661. CatI and CatJ are the subunits of the 3-oxoadipate:succinyl-CoA transferase, whose activity was demonstrated when both genes were ligated into expression vector pET11a. ORF4, termed catF, codes for a protein of 401 amino acid residues with a predicted mass of 41,678 Da with 3-oxoadipyl-CoA thiolase activity. The last three ORFs seem to form an operon since they are oriented in the same direction and showed an overlapping of 1 bp between catI and catJ and of 4 bp between catJ and catF. Conserved functional groups important for the catalytic activity of CoA transferases and thiolases were identified in CatI, CatJ, and CatF. ORF5 (catD) encodes the 3-oxoadipate enol-lactone hydrolase. An incomplete ORF6 of 1,183 bp downstream of ORF5 and oriented in the opposite direction was found. The protein sequence deduced from ORF6 showed a putative AMP-binding domain signature.


2019 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Daisuke Miyazawa ◽  
Le Thi Ha Thanh ◽  
Akio Tani ◽  
Masaki Shintani ◽  
Nguyen Hoang Loc ◽  
...  

Geobacillus sp. JF8 is a thermophilic biphenyl and naphthalene degrader. To identify the naphthalene degradation genes, cis-naphthalene dihydrodiol dehydrogenase was purified from naphthalene-grown cells, and its N-terminal amino acid sequence was determined. Using a DNA probe encoding the N-terminal region of the dehydrogenase, a 10-kb DNA fragment was isolated. Upstream of nahB, a gene for dehydrogenase, there were two open reading frames which were designated as nahAc and nahAd, respectively. The products of nahAc and nahAd were predicted to be alpha and beta subunit of ring-hydroxylating dioxygenases, respectively. Phylogenetic analysis of amino acid sequences of NahB indicated that it did not belong to the cis-dihydrodiol dehydrogenase group that includes those of classical naphthalene degradation pathways. Downstream of nahB, four open reading frames were found, and their products were predicted as meta-cleavage product hydrolase, monooxygenase, dehydrogenase, and gentisate 1,2-dioxygenase, respectively. A reverse transcriptase-PCR analysis showed that transcription of nahAcAd was induced by naphthalene. These findings indicate that we successfully identified genes involved in the upper pathway of naphthalene degradation from a thermophilic bacterium.


2008 ◽  
Vol 52 (6) ◽  
pp. 1952-1956 ◽  
Author(s):  
Yohei Doi ◽  
Laurent Poirel ◽  
David L. Paterson ◽  
Patrice Nordmann

ABSTRACT A chromosomally encoded class D β-lactamase, OXA-114, was characterized from Achromobacter xylosoxidans strain CIP69598. β-Lactamase OXA-114 shared 56% amino acid identity with the naturally occurring class D β-lactamase of Burkholderia cenocepacia and 42% identity with the acquired oxacillinases OXA-9 and OXA-18. OXA-114 has a narrow-spectrum hydrolysis profile, although it includes imipenem, at a very low level. PCR and sequencing revealed that bla OXA-114-like genes were identified in all A. xylosoxidans strains tested (n = 5), indicating that this β-lactamase is naturally occurring in that species. Induction experiments with imipenem and cefoxitin did not show inducibility of bla OXA-114 expression.


2000 ◽  
Vol 44 (12) ◽  
pp. 3444-3446 ◽  
Author(s):  
Libera M. Dalla Costa ◽  
Peter E. Reynolds ◽  
Helena A. P. H. M. Souza ◽  
Dilair C. Souza ◽  
Marie-France I. Palepou ◽  
...  

ABSTRACT Enterococcus faecium 10/96A from Brazil was resistant to vancomycin (MIC, 256 μg/ml) but gave no amplification products with primers specific for known van genotypes. A 2,368-bp fragment of a van cluster contained one open reading frame encoding a peptide with 83% amino acid identity to VanHD, and a second encoding a d-alanine-d-lactate ligase with 83 to 85% identity to VanD. The divergent glycopeptide resistance phenotype was designated VanD4.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 196-196 ◽  
Author(s):  
B. N. Shen ◽  
Y. X. Zheng ◽  
W. H. Chen ◽  
T. Y. Chang ◽  
H.-M. Ku ◽  
...  

Pineapple (Ananas comosus) is one of the major fruit crops in Taiwan, accounting for 275 million U.S. dollars in 2006, following betel nut and citrus production in crop value. Tainung No. 17 is the most important cultivar, accounting for more than 70% of pineapples planted. Mealybug wilt of pineapple (MWP) is one of the most destructive diseases of pineapple. Pineapple mealybug wilt-associated virus-1 (PMWaV-1), PMWaV-2, and PMWaV-3 were identified as three distinct species in Ampelovirus from diseased Hawaiian pineapple (1,2). In November of 2007, pineapples (cv. Tainung No. 17) planted in Pingtung County of southern Taiwan showed symptoms similar to MWP. Mealybugs (Dysmicoccus brevipes) were also found. Three primer pairs, 225/226, 223/224, and 263/264 described previously specific for the HSP70h genes of PMWaV-1 (1), -2, and -3 (2), respectively, were used to detect the presence of these three viruses by reverse transcription (RT)-PCR. Expected DNA fragments of 590, 610, and 499 nt were obtained from the total RNA isolated from the leaves of diseased pineapples with primer pairs 225/226, 223/224, and 263/264, respectively. The RT-PCR amplified fragments were cloned, sequenced, and analyzed. The 590-nt fragment (Accession No. EU769113) shared 91.6 to 99.5% nucleotide and 96.8 to 99.5% amino acid identity to those of five isolates of PMWaV-1 available in the GenBank; one each from Hawaii (Accession No. AF414119) and Thailand (Accession No. EF620774) and three from Australia (Accession Nos. EF488752, EF467923, and EF467925). The 610-nt fragment (Accession No. EU769115) showed 98.7 and 99.7% nucleotide and 98% and 100% amino acid identity to those of PMWaV-2 from Hawaii (Accession No. AF283103) and Thailand (Accession No. EU016675), respectively. The 499-nt fragment (Accession No. FJ209047) shared 86.8 to 99.0% nucleotide and 94.0 to 100.0% amino acid identity to those of five PMWaV-3 isolates available in the GenBank; one from Hawaii (Accession No. DQ399259) and four from Australia (Accession Nos. EF467918, EF467919, EF488754, and EF488755). Using primer pairs FJ08-1 (5′-ATGGCTGATTCGAGC)/FJ08-2 (5′-TTATTTGCGTCCACC), FJ08-7 (5′-AGTGAGATTGATCGT)/FJ08-8 (5′-TGCAGGTATCCGCTG), and FJ08-35 (5′-AACGACCGAACTCGC)/FJ08-36 (5′-ATACTACAGATATTG) specific to the coat protein (CP) genes of PMWaV-1, -2, and -3, respectively, expected DNA fragments of 774, 909, and 789 nt were amplified by RT-PCR. The 774-nt CP gene of PMWaV-1 (Accession No. EU769114) shared 99% nucleotide and 98.4% amino acid identity to those of Hawaiian isolate (Accession No. AF414119). The 909-nt CP gene of PMWaV-2 (Accession No. EU769116) shared 99.0 and 99.1% nucleotide identity with isolates from Hawaii (Accession No. AF283103) and Cuba (Accession No. DQ225114), respectively, and 99.3% amino acid identity with both. The 789-nt CP gene of PMWaV-3 (Accession No. FJ209048) shared 99.1% nucleotide and 98.1% amino acid identity to those of the Hawaiian isolate (Accession No. DQ399259). One to two viruses among PMWaV-1, -2, and -3 were detected in all 40 samples collected from diseased pineapples. To our knowledge, this is the first report to identify three PMWaVs in the most important and widely planted pineapple cultivar in Taiwan, Tainung No. 17, by molecular characterization of the HSP70h and CP genes. References: (1) D. M. Sether et al. Plant Dis. 85:856, 2001. (2) D. M. Sether et al. Plant Dis. 89:450, 2005.


1998 ◽  
Vol 180 (6) ◽  
pp. 1533-1539 ◽  
Author(s):  
John S. Swartley ◽  
Li-Jun Liu ◽  
Yoon K. Miller ◽  
Larry E. Martin ◽  
Srilatha Edupuganti ◽  
...  

ABSTRACT The (α1→6)-linkedN-acetyl-d-mannosamine-1-phosphate meningococcal capsule of serogroup A Neisseria meningitidisis biochemically distinct from the sialic acid-containing capsules produced by other disease-associated meningococcal serogroups (e.g., B, C, Y, and W-135). We defined the genetic cassette responsible for expression of the serogroup A capsule. The cassette comprised a 4,701-bp nucleotide sequence located between the outer membrane capsule transporter gene, ctrA, and galE, encoding the UDP-glucose-4-epimerase. Four open reading frames (ORFs) not found in the genomes of the other meningococcal serogroups were identified. The first serogroup A ORF was separated from ctrA by a 218-bp intergenic region. Reverse transcriptase (RT) PCR and primer extension studies of serogroup A mRNA showed that all four ORFs were cotranscribed in the opposite orientation to ctrA and that transcription of the ORFs was initiated from the intergenic region by a ς-70-type promoter that overlapped the ctrA promoter. The first ORF exhibited 58% amino acid identity with the UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) 2-epimerase of Escherichia coli, which is responsible for the conversion of UDP-GlcNAc into UDP-N-acetyl-d-mannosamine. Polar or nonpolar mutagenesis of each of the ORFs resulted in an abrogation of serogroup A capsule production as determined by colony immunoblots and enzyme-linked immunosorbent assay. Replacement of the serogroup A biosynthetic gene cassette with a serogroup B cassette by transformation resulted in capsule switching from a serogroup A capsule to a serogroup B capsule. These data indicate that assembly of the serogroup A capsule likely begins with monomeric UDP-GlcNAc and requires proteins encoded by three other genes found in the serogroup A N. meningitidis-specific operon located betweenctrA and galE.


Sign in / Sign up

Export Citation Format

Share Document