scholarly journals Induction signals for vancomycin resistance encoded by the vanA gene cluster in Enterococcus faecium.

1996 ◽  
Vol 40 (7) ◽  
pp. 1645-1648 ◽  
Author(s):  
M H Lai ◽  
D R Kirsch

The induction of vancomycin resistance in enterococci containing the vanA gene cluster is thought to be controlled by a two-component sensor-response regulator system encoded by vanR and vanS. Eight inducing compounds were identified by screening a panel of more than 6,800 antibiotics and synthetic compounds including the three tested glycopeptides (vancomycin, avoparcin, and ristocetin), two other cell wall biosynthesis inhibitors (moenomycin and bacitracin), two cyclic peptide antibiotics (antibiotic AO341 beta and polymyxin B), and a macrocyclic lactone antibiotic (moxidectin). Induction activity by structurally unrelated antibiotics suggests that the induction signal is not a structural feature of vancomycin.

2015 ◽  
Vol 83 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Kivanc Bilecen ◽  
Jiunn C. N. Fong ◽  
Andrew Cheng ◽  
Christopher J. Jones ◽  
David Zamorano-Sánchez ◽  
...  

Two-component systems play important roles in the physiology of many bacterial pathogens.Vibrio cholerae's CarRS two-component regulatory system negatively regulates expression ofvps(Vibriopolysaccharide) genes and biofilm formation. In this study, we report that CarR confers polymyxin B resistance by positively regulating expression of thealmEFGgenes, whose products are required for glycine and diglycine modification of lipid A. We determined that CarR directly binds to the regulatory region of thealmEFGoperon. Similarly to acarRmutant, strains lackingalmE,almF, andalmGexhibited enhanced polymyxin B sensitivity. We also observed that strains lackingalmEor thealmEFGoperon have enhanced biofilm formation. Our results reveal that CarR regulates biofilm formation and antimicrobial peptide resistance inV. cholerae.


2015 ◽  
Vol 197 (20) ◽  
pp. 3294-3306 ◽  
Author(s):  
TuAnh Ngoc Huynh ◽  
Hsia-Yin Lin ◽  
Chris E. Noriega ◽  
Alice V. Lin ◽  
Valley Stewart

ABSTRACTIn two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced inackAnull strains that accumulate acetyl phosphate, it persisted inpta ackAdouble null strains that cannot synthesize this compound and was observed also innarL+strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in anarcB barAdouble null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered thein vitrorates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition.IMPORTANCEMany bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is inhibited in part by the high interaction specificity between cognate sensor-response regulator pairs. This study shows that a relatively subtle missense change from Val to Ala nullifies cross talk inhibition, enabling at least two noncognate sensors to enforce an inappropriate output independently of the relevant input.


2007 ◽  
Vol 52 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Hui-min Neoh ◽  
Longzhu Cui ◽  
Harumi Yuzawa ◽  
Fumihiko Takeuchi ◽  
Miki Matsuo ◽  
...  

ABSTRACT Multistep genetic alteration is required for methicillin-resistant Staphylococcus aureus (MRSA) to achieve the level of vancomycin resistance of vancomycin-intermediate S. aureus (VISA). In the progression of vancomycin resistance, strains with heterogeneous vancomycin resistance, designated hetero-VISA, are observed. In studying the whole-genome sequencing of the representative hetero-VISA strain Mu3 and comparing it with that of closely related MRSA strains Mu50 (VISA) and N315 (vancomycin-susceptible S. aureus [VSSA]), we identified a mutation in the response regulator of the graSR two-component regulatory system. Introduction of mutated graR, designated graR*, but not intact graR, designated graRn, could convert the hetero-VISA phenotype of Mu3 into a VISA phenotype which was comparable to that of Mu50. The same procedure did not appreciably increase the vancomycin resistance of VSSA strain N315, indicating that graR* expression was effective only in the physiological milieu of hetero-VISA cell to achieve a VISA phenotype. Interestingly, the overexpression of graR* increased the daptomycin MICs in both Mu3 and N315 and decreased the oxacillin MIC in N315.


2020 ◽  
Author(s):  
Patrick Allihn ◽  
Mathias W. Hackl ◽  
Christina Ludwig ◽  
Stephan M. Hacker ◽  
Stephan A. Sieber

Pseudomonas aeruginosa is a difficult-to-treat Gram-negative bacterial pathogen causing life-threatening infections. Adaptive resistance (AR) to cationic peptide antibiotics such as polymyxin B impairs the therapeutic success. This self-protection is mediated by two component systems (TCS) consisting of a membrane-bound histidine kinase and an intracellular response regulator (RR). As phosphorylation of the key RR aspartate residue is transient during signaling and hydrolytically unstable, the study of these systems is challenging. Therefore, we applied a tailored reverse polarity chemical proteomic strategy to capture this transient modification and read-out RR phosphorylation in complex proteomes using a nucleophilic probe. An ideal trapping methodology was developed with a recombinant RR demonstrating the importance of fine-tuned acidic pH values to facilitate the attack on the aspartate carbonyl C-atom and prevent unproductive hydrolysis. Analysis of Bacillus subtilis and P. aeruginosa proteomes revealed the detection of multiple phosphoaspartate sites, which closely resembled the conserved RR sequence motif. With this validated strategy we dissected the signaling of dynorphin A, a human peptide stress hormone, which is sensed by P. aeruginosa to mediate AR. Intriguingly, our methodology identified CprR as an unprecedented RR in dynorphin A interkingdom signaling.


2007 ◽  
Vol 51 (8) ◽  
pp. 2679-2689 ◽  
Author(s):  
Michael Meehl ◽  
Silvia Herbert ◽  
Friedrich Götz ◽  
Ambrose Cheung

ABSTRACTCurrent treatment for serious infections caused by methicillin-resistantStaphylococcus aureusrelies heavily upon the glycopeptide antibiotic vancomycin. Unfortunately, this practice has led to an intermediate resistance phenotype that is particularly difficult to treat in invasive staphylococcal diseases, such as septicemia and its metastatic complications, including endocarditis. Although the vancomycin-intermediate resistance phenotype has been linked to abnormal cell wall structures and autolytic rates, the corresponding genetic changes have not been fully elucidated. Previously, whole-genome array studies listed numerous genes that are overexpressed in vancomycin-intermediate sensitive strains, includinggraRS(SACOL0716 to -0717), encoding a two-component regulatory system (TCRS), as well as the adjacentvraFG(SACOL0718 to -0720), encoding an ATP-binding cassette (ABC) transporter; but the exact contribution of these genes to increased vancomycin resistance has not been defined. In this study, we showed that isogenic strains with mutations in genes encoding the GraRS TCRS and the VraFG ABC transporter are hypersensitive to vancomycin as well as polymyxin B. Moreover, GraRS regulates the expression of the adjacent VraFG pump, reminiscent of gram-positive bacteriocin-immunity regulons. Mutations ofgraRSandvraFGalso led to increased autolytic rates and a more negative net surface charge, which may explain, in part, to their increased sensitivity to cationic antimicrobial peptides. Taken together, these data reveal an important genetic mediator to the vancomycin-intermediateS. aureusphenotype and may hold clues to the selective pressures on staphylococci upon exposure to selective cationic peptide antibiotics used in clinical practice.


2011 ◽  
Vol 55 (9) ◽  
pp. 4188-4195 ◽  
Author(s):  
Miki Matsuo ◽  
Tomomi Hishinuma ◽  
Yuki Katayama ◽  
Longzhu Cui ◽  
Maria Kapi ◽  
...  

ABSTRACTThe clinical vancomycin-intermediateStaphylococcus aureus(VISA) strain Mu50 carries two mutations in thevraSRandgraRStwo-component regulatory systems (TCRSs), namely,vraS(I5N) andgraR(N197S) (hereinafter designatedgraR*). The clinical heterogeneously vancomycin-intermediateS. aureus(hVISA) strain Mu3 shares with Mu50 the mutation invraSthat encodes the VraS two-component histidine kinase. Previously, we showed that introduction of the plasmid pgraR*, carrying the mutated two-component response regulatorgraR*, converted the hVISA strain Mu3 into VISA (vancomycin MIC = 4 mg/liter). Subsequently, however, we found that the introduction of a single copy ofgraR* into the Mu3 chromosome by a gene replacement method did not confer on Mu3 the VISA phenotype. The gene-replaced strain Mu3graR* thus obtained remained hVISA (MIC ≤ 2 mg/liter), although a small increase in vancomycin MIC was observed compared to that of the parent strain Mu3. Reevaluation of the Mu3 and Mu50 genomes revealed the presence of another mutation responsible for the expression of the VISA phenotype in Mu50. Here, we demonstrate that in addition to the two regulator mutations, a third mutation found in the Mu50rpoBgene, encoding the RNA polymerase β subunit, was required for Mu3 to achieve the level of vancomycin resistance of Mu50. The selection of strain Mu3graR* with rifampin gave rise torpoBmutants with various levels of increased vancomycin resistance. Furthermore, 3 (33%) of 10 independently isolated VISA strains established from the heterogeneous subpopulations of Mu3graR* were found to possessrpoBmutations with or without an accompanying rifampin-resistance phenotype. The data indicate that a sizable proportion of the resistant hVISA cell subpopulations is composed of spontaneousrpoBmutants with various degrees of increased vancomycin resistance.


2020 ◽  
Author(s):  
Patrick Allihn ◽  
Mathias W. Hackl ◽  
Christina Ludwig ◽  
Stephan M. Hacker ◽  
Stephan A. Sieber

Pseudomonas aeruginosa is a difficult-to-treat Gram-negative bacterial pathogen causing life-threatening infections. Adaptive resistance (AR) to cationic peptide antibiotics such as polymyxin B impairs the therapeutic success. This self-protection is mediated by two component systems (TCS) consisting of a membrane-bound histidine kinase and an intracellular response regulator (RR). As phosphorylation of the key RR aspartate residue is transient during signaling and hydrolytically unstable, the study of these systems is challenging. Therefore, we applied a tailored reverse polarity chemical proteomic strategy to capture this transient modification and read-out RR phosphorylation in complex proteomes using a nucleophilic probe. An ideal trapping methodology was developed with a recombinant RR demonstrating the importance of fine-tuned acidic pH values to facilitate the attack on the aspartate carbonyl C-atom and prevent unproductive hydrolysis. Analysis of Bacillus subtilis and P. aeruginosa proteomes revealed the detection of multiple phosphoaspartate sites, which closely resembled the conserved RR sequence motif. With this validated strategy we dissected the signaling of dynorphin A, a human peptide stress hormone, which is sensed by P. aeruginosa to mediate AR. Intriguingly, our methodology identified CprR as an unprecedented RR in dynorphin A interkingdom signaling.


2021 ◽  
Vol 9 (10) ◽  
pp. 2026
Author(s):  
Alexandra A. Guffey ◽  
Patrick J. Loll

Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field’s most pressing questions: How does VanS sense vancomycin?


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Erin J. Breland ◽  
Ellisa W. Zhang ◽  
Tomas Bermudez ◽  
Charles R. Martinez ◽  
Maria Hadjifrangiskou

ABSTRACT Two-component systems are prototypically comprised of a histidine kinase (sensor) and a response regulator (responder). The sensor kinases autophosphorylate at a conserved histidine residue, acting as a phosphodonor for subsequent phosphotransfer to and activation of a cognate response regulator. In rare cases, the histidine residue is also essential for response regulator dephosphorylation via a reverse-phosphotransfer reaction. In this work, we present an example of a kinase that relies on reverse phosphotransfer to catalyze the dephosphorylation of its cognate partner. The QseC sensor kinase is conserved across several Gram-negative pathogens; its interaction with its cognate partner QseB is critical for maintaining pathogenic potential. Here, we demonstrate that QseC-mediated dephosphorylation of QseB occurs via reverse phosphotransfer. In previous studies, we demonstrated that, in uropathogenic Escherichia coli, exposure to high concentrations of ferric iron (Fe3+) stimulates the PmrB sensor kinase. This stimulation, in turn, activates the cognate partner, PmrA, and noncognate QseB to enhance tolerance to polymyxin B. We demonstrate that in the absence of signal, kinase-inactive QseC variants, in which the H246 residue was changed to alanine (A) aspartate (D) or leucine (L), rescued a ΔqseC deletion mutant, suggesting that QseC can control QseB activation via a mechanism that is independent of reverse phosphotransfer. However, in the presence of Fe3+, the same QseC variants were unable to mediate a wild-type stimulus response, indicating that QseC-mediated dephosphorylation is required for maintaining proper QseB-PmrB-PmrA interactions. IMPORTANCE Two-component signaling networks constitute one of the predominant methods by which bacteria sense and respond to their changing environments. Two-component systems allow bacteria to thrive and survive in a number of different environments, including within a human host. Uropathogenic Escherichia coli, the causative agent of urinary tract infections, rely on two interacting two-component systems, QseBC and PmrAB, to induce intrinsic resistance to the colistin antibiotic polymyxin B, which is a last line of defense drug. The presence of one sensor kinase, QseC, is required to regulate the interaction between the other sensor kinase, PmrB and the response regulators from both systems, QseB and PmrA, effectively creating a “four-component” system required for virulence. Understanding the important role of the sensor kinase QseC will provide insight into additional ways to therapeutically target uropathogens that harbor these signaling systems.


Sign in / Sign up

Export Citation Format

Share Document