scholarly journals Liposome encapsulation of clofazimine reduces toxicity in vitro and in vivo and improves therapeutic efficacy in the beige mouse model of disseminated Mycobacterium avium-M. intracellulare complex infection.

1996 ◽  
Vol 40 (8) ◽  
pp. 1893-1902 ◽  
Author(s):  
R T Mehta

Disseminated infections caused by the Mycobacterium avium-M. intracellulare complex (MAC) are the most frequent opportunistic bacterial infections in patients with AIDS. MAC isolates are resistant to many of the standard antituberculous drugs. Failure to obtain significant activities of certain drugs is due to difficulty in achieving high concentrations at the sites where the infections reside. New and improved agents for the treatment of mycobacterial infections are therefore required. Earlier, the anti-MAC activities of various agents in free or liposomal form were studied; liposomes were used as drug carriers to ultimately target the drugs to macrophages where mycobacterial infections reside. Clofazimine was chosen for further studies because it could be effectively encapsulated and its activity was well maintained in liposomal form. The present studies with both erythrocytes and macrophages as the model systems show that liposomal drug is far less toxic in vitro than the free drug. The in vivo toxicity of clofazimine was also significantly reduced after liposome encapsulation. The therapeutic efficacies of free and liposomal drugs were compared in a beige mouse model of disseminated MAC infection. An equivalent dose of liposomal drug (10 mg/kg of body weight) was more effective in eliminating the bacterial from the various organs studied, particularly from the liver. Moreover, because of the reduced toxicity of liposomal drug, higher doses could be administered, resulting in a significant reduction in the numbers of CFU in the liver, spleen, and kidneys. The data demonstrate that liposomal clofazimine is highly effective in the treatment of MAC infections, even if the treatment is initiated after a disseminated infection has been established. The present studies thus suggest the potential usefulness of liposomal clofazimine for the treatment of disseminated MAC infections.

2000 ◽  
Vol 44 (10) ◽  
pp. 2895-2896 ◽  
Author(s):  
M. H. Cynamon ◽  
J. L. Carter ◽  
C. M. Shoen

ABSTRACT ABT-773, a new ketolide antimicrobial agent, was evaluated in comparison to clarithromycin (CLA) in vitro against Mycobacterium avium complex (MAC) and in a beige mouse model of disseminated MAC infection. The MICs at which 50 and 90% of the isolates tested were inhibited were 2 and 4 μg/ml, respectively, for CLA and 8 and 16 μg/ml, respectively, for ABT-773. Eight CLA-resistant isolates were found to be resistant to ABT-773 (MICs > 64 μg/ml). In the in vivo study mice were treated with ABT-773 (50, 100, and 200 mg/kg of body weight) or CLA (200 mg/kg). Both ABT-773 (100 and 200 mg/kg) and CLA significantly decreased the viable cell counts in spleens and lungs. ABT-773 (200 mg/kg) and CLA had similar activities in lungs, but the former was more active in spleens.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Arun K. Kannan ◽  
Zhi Su ◽  
Donna M. Gauvin ◽  
Stephanie E. Paulsboe ◽  
Ryan Duggan ◽  
...  

AbstractFoxp3+ regulatory T cells (Tregs) represent a major fraction of skin resident T cells. Although normally protective, Tregs have been shown to produce pro-inflammatory cytokines in human diseases, including psoriasis. A significant hurdle in the Treg field has been the identification, or development, of model systems to study this Treg plasticity. To overcome this gap, we analyzed skin resident Tregs in a mouse model of IL-23 mediated psoriasiform dermatitis. Our results demonstrate that IL-23 drove the accumulation of Tregs; including a subpopulation that co-expressed RORγt and produced IL-17A. Genesis of this population was attenuated by a RORγt inverse agonist compound and clinically relevant therapeutics. In vitro, IL-23 drove the generation of CD4+Foxp3+RORγt+IL-17A+ cells from Treg cells. Collectively, our data shows that IL-23 drives Treg plasticity by inducing a population of CD4+Foxp3+RORγt+IL-17A+ cells that could play a role in the disease pathogenesis. Through this work, we define an in vitro system and a pre-clinical in vivo mouse model that can be used to further study Treg homeostasis and plasticity in the context of psoriasis.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anichavezhi Devendran ◽  
Rasheed Bailey ◽  
Sumanta Kar ◽  
Francesca Stillitano ◽  
Irene Turnbull ◽  
...  

Background: Heart failure (HF) is a complex clinical condition associated with substantial morbidity and mortality worldwide. The contractile dysfunction and arrhythmogenesis related to HF has been linked to the remodelling of calcium (Ca ++ ) handling. Phospholamban (PLN) has emerged as a key regulator of intracellular Ca ++ concentration. Of the PLN mutations, L39X is intriguing as it has not been fully characterized. This mutation is believed to be functionally equivalent to PLN null (KO) but contrary to PLN KO mice, L39X carriers develop a lethal cardiomyopathy (CMP). Our study aims at using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from homozygous L39X carriers to elucidate the role of L39X in human pathophysiology. Our plan also involves the characterization of humanized L39X knock-in mice (KM), which we hypothesize will develop a CMP from mis-localization of PLN and disruption of Ca ++ signalling. Methodology and Results: Mononuclear cells from Hom L39X carriers were obtained to generate 11 integration-free patient-specific iPSC clones. The iPSC-CMs were derived using established protocols. Compared to the WT iPSC-CMs, the Hom L39X derived-CMs PLN had an abnormal cytoplasmic distribution and formed intracellular aggregates, with the loss of perinuclear localization. There was also a 70% and 50% reduction of mRNA and protein expression of PLN respectively in L39X compared to WT iPSC-CMs. These findings indicated that L39X PLN is both under-expressed and mis-localized within the cell. To validate this observation in-vivo, we genetically modified FVB mice to harbour the human L39X. Following electroporation, positively transfected mouse embryonic stem cells were injected into host blastocysts to make humanized KM that were subsequently used to generate either a protamine-Cre (endogenous PLN driven expression) or a cardiac TNT mouse (i.e., CMP specific). Conclusion: Our data confirm an abnormal intracellular distribution of PLN, with the loss of perinuclear accumulation and mis-localization, suggestive of ineffective targeting to or retention of L39X. The mouse model will be critically important to validate the in-vitro observations and provides an ideal platform for future studies centred on the development of novel therapeutic strategies including virally delivered CRISPR/Cas9 for in-vivo gene editing and testing of biochemical signalling pathways.


2004 ◽  
Vol 48 (5) ◽  
pp. 1837-1847 ◽  
Author(s):  
Bradley J. Catalone ◽  
Tina M. Kish-Catalone ◽  
Lynn R. Budgeon ◽  
Elizabeth B. Neely ◽  
Maelee Ferguson ◽  
...  

ABSTRACT Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 162S-164S ◽  
Author(s):  
Stephen P. Peters ◽  
Robert M. Naclerio ◽  
Alkis Togias ◽  
Robert P. Schleimer ◽  
Donald W. MacGlashan ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii413-iii413
Author(s):  
Maggie Seblani ◽  
Markella Zannikou ◽  
Katarzyna Pituch ◽  
Liliana Ilut ◽  
Oren Becher ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a devastating brain tumor affecting young children. Immunotherapies hold promise however the lack of immunocompetent models recreating a faithful tumor microenvironment (TME) remains a challenge for development of targeted immunotherapeutics. We propose to generate an immunocompetent DIPG mouse model through induced overexpression of interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-associated antigen overexpressed by glioma cells. A model with an intact TME permits comprehensive preclinical assessment of IL13Rα2-targeted immunotherapeutics. Our novel model uses the retroviral avian leucosis and sarcoma virus (RCAS) for in vivo gene delivery leading to IL13Rα2 expression in proliferating progenitor cells. Transfected cells expressing IL13Rα2 and PDGFB, a ligand for platelet derived growth factor receptor, alongside induced p53 loss via the Cre-Lox system are injected in the fourth ventricle in postnatal pups. We validated the expression of PDGFB and IL13Rα2 transgenes in vitro and in vivo and will characterize the TME through evaluation of the peripheral and tumor immunologic compartments using immunohistochemistry and flow cytometry. We confirmed expression of transgenes via flow cytometry and western blotting. Comparison of survival dynamics in mice inoculated with PDGFB alone with PDGFB+IL13Rα2 demonstrated that co-expression of IL13Rα2 did not significantly affect mice survival compared to the PDGFB model. At time of application, we initiated experiments to characterize the TME. Preliminary data demonstrate establishment of tumors within and adjacent to the brainstem and expression of target transgenes. Preclinical findings in a model recapitulating the TME may provide better insight into outcomes upon translation to clinical application.


Sign in / Sign up

Export Citation Format

Share Document