scholarly journals Plasma Lipoprotein Distribution of Liposomal Nystatin Is Influenced by Protein Content of High-Density Lipoproteins

1998 ◽  
Vol 42 (8) ◽  
pp. 1878-1888 ◽  
Author(s):  
Shawn M. Cassidy ◽  
Frank W. Strobel ◽  
Kishor M. Wasan

ABSTRACT The plasma lipoprotein distribution of free nystatin (Nys) and liposomal nystatin (L-Nys) in human plasma samples with various lipoprotein lipid and protein concentrations and compositions was investigated. To assess the lipoprotein distributions of Nys and L-Nys, human plasma was incubated with Nys and L-Nys (equivalent to 20 μg/ml) for 5 min at 37°C. The plasma was subsequently partitioned into its lipoprotein and lipoprotein-deficient plasma fractions by step-gradient ultracentrifugation, and each fraction was analyzed for Nys content by high-pressure liquid chromatography. The lipid and protein contents and compositions of each fraction were determined with enzymatic kits. Following the incubation of Nys and L-Nys in human plasma the majority of Nys recovered within the lipoprotein fractions was recovered from the high-density lipoprotein (HDL) fraction. Incorporation of Nys into liposomes consisting of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol significantly increased the percentage of drug recovered within the HDL fraction. Furthermore, it was observed that as the amount of HDL protein decreased the amounts of Nys and L-Nys recovered within this fraction decreased. These findings suggest that the preferential distribution of Nys and L-Nys into plasma HDL may be a function of the HDL protein concentration.

1999 ◽  
Vol 43 (6) ◽  
pp. 1424-1428 ◽  
Author(s):  
Manisha Ramaswamy ◽  
Thomas L. Wallace ◽  
Paul A. Cossum ◽  
Kishor M. Wasan

ABSTRACT The objective of this study was an interspecies comparison of free nystatin (NYS) and liposomal NYS (Nyotran) distribution in plasma. NYS and liposomal NYS at concentrations of 5, 10, and 20 μg of NYS/ml were incubated in human, dog, and rat plasma for 5, 60, and 180 min at 37°C. Following these incubations, plasma samples were separated into their high-density lipoprotein (HDL), triglyceride-rich lipoprotein, low-density lipoprotein, and lipoprotein-deficient plasma (LPDP) fractions by density-gradient ultracentrifugation, and each fraction was assayed for NYS by high-pressure liquid chromatography. Total plasma and lipoprotein cholesterol, triglyceride, and protein concentrations in each human, dog, or rat plasma sample were determined by enzymatic assays. When NYS and liposomal NYS were incubated in human, dog, or rat plasma, the majority of the NYS was recovered in the LPDP fraction. For the 5- and 60-min incubation times for all plasmas measured, a significantly greater percentage of NYS was recovered in the lipoprotein fraction (primarily HDL) following the incubation of liposomal NYS than following the incubation of NYS. There was a significant correlation between the lipoprotein lipid and protein profiles in human, dog, and rat plasmas and the distribution of NYS and liposomal NYS in plasma. In particular, differences in the proportion of plasma lipoprotein cholesterol, triglyceride, and apolar lipids (cholesteryl ester and triglycerides) carried by HDL influenced the distribution of NYS and liposomal NYS within plasmas of different species. These findings suggest that the distribution of NYS among plasma lipoproteins of different species is defined by the proportion of lipid carried by HDL, and this is possibly an important consideration when evaluating the pharmacokinetics, toxicities, and activities of these compounds following administration to different animal species.


2003 ◽  
Vol 47 (9) ◽  
pp. 2796-2803 ◽  
Author(s):  
Kishor M. Wasan ◽  
Olena Sivak ◽  
Richard A. Cote ◽  
Aaron I. MacInnes ◽  
Kathy D. Boulanger ◽  
...  

ABSTRACT The objective of this study was to determine the distribution profile of the novel endotoxin antagonist E5564 in plasma obtained from fasted human subjects with various lipid concentrations. Radiolabeled E5564 at 1 μM was incubated in fasted plasma from seven human subjects with various total cholesterol (TC) and triglyceride (TG) concentrations for 0.5 to 6 h at 37°C. Following these incubations, plasma samples were separated into their lipoprotein and lipoprotein-deficient fractions by ultracentrifugation and were assayed for E5564 radioactivity. TC, TG, and protein concentrations in each fraction were determined by enzymatic assays. Lipoprotein surface charge within control and phosphatidylinositol-treated plasma and E5564’s influence on cholesteryl ester transfer protein (CETP) transfer activity were also determined. We observed that the majority of E5564 was recovered in the high-density lipoprotein (HDL) fraction. We further observed that incubation in plasma with increased levels of TG-rich lipoprotein (TRL) lipid (TC and TG) concentrations resulted in a significant increase in the percentage of E5564 recovered in the TRL fraction. In further experiments, E5564 was preincubated in human TRL. Then, these mixtures were incubated in hypolipidemic human plasma for 0.5 and 6 h at 37°C. Preincubation of E5564 in purified TRL prior to incubation in human plasma resulted in a significant decrease in the percentage of drug recovered in the HDL fraction and an increase in the percentage of drug recovered in the TRL and low-density lipoprotein fractions. These findings suggest that the majority of the drug binds to HDLs. Preincubation of E5564 in TRL prior to incubation in normolipidemic plasma significantly decreased the percentage of drug recovered in the HDL fraction. Modifications to the lipoprotein negative charge did not alter the E5564 concentration in the HDL fraction. In addition, E5564 does not influence CETP-mediated transfer activity. Information from these studies could be used to help identify the possible components of lipoproteins which influence the interaction of E5564 with specific lipoprotein particles.


1975 ◽  
Author(s):  
L.-O. Andersson ◽  
H. Sandberg

Lipoprotein fractions from human plasma was prepared by ultracentrifugal flotation. Additions of those fractions to plasma containing various amounts of platelets showed that in platelet-poor and platelet-free plasma there was a clear clot-promoting effect of the additions. In platelet-rich plasma, this effect was negligible. Measurements on the thrombo-plastine and Stypven clotting times showed that the high density lipoprotein fraction affected both the prothrombin and the Factor X activation steps whereas the low density lipoproteins only influenced the prothrombin activation step. Addition of antibodies against high density lipoproteins to platelet-free plasma caused a prolongation of the thromboplastin time.The relation between lipoprotein structure, phospholipid content and thromboplastic effects is dicussed.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 857
Author(s):  
Josep Julve ◽  
Joan Carles Escolà-Gil

Epidemiological studies have shown that low levels of plasma high-density lipoprotein cholesterol (HDL-C) are associated with increased atherosclerotic cardiovascular disease (CVD) [...]


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 764
Author(s):  
Arianna Strazzella ◽  
Alice Ossoli ◽  
Laura Calabresi

Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.


Sign in / Sign up

Export Citation Format

Share Document