scholarly journals In Vitro and In Vivo Activities of Syn2190, a Novel β-Lactamase Inhibitor

1999 ◽  
Vol 43 (8) ◽  
pp. 1895-1900 ◽  
Author(s):  
Kouichi Nishida ◽  
Chieko Kunugita ◽  
Tatsuya Uji ◽  
Fusahiro Higashitani ◽  
Akio Hyodo ◽  
...  

ABSTRACT Syn2190, a monobactam derivative containing 1,5-dihydroxy-4-pyridone as the C-3 side chain, is a potent inhibitor of group 1 β-lactamase. The concentrations of inhibitor needed to reduce the initial rate of hydrolysis of substrate by 50% for Syn2190 against these enzymes were in the range of 0.002 to 0.01 μM. These values were 220- to 850-fold lower than those of tazobactam. Syn2190 showed in vitro synergy with ceftazidime and cefpirome. This synergy was dependent on the concentration of the inhibitor against group 1 β-lactamase-producing strains, such as Pseudomonas aeruginosa, Enterobacter cloacae, Citrobacter freundii, and Morganella morganii. However, against β-lactamase-derepressed mutants of P. aeruginosa, the MICs of ceftazidime plus Syn2190 were not affected by the amount of β-lactamase, and the values were the same for the parent strains. The MICs at which 50% of isolates are inhibited (MIC50s) of ceftazidime plus Syn2190 were 2- to 16-fold lower than those of ceftazidime alone for ceftazidime-resistant, clinically isolated gram-negative bacteria. Similarly, the MIC50s of cefpirome plus Syn2190 were two- to eightfold lower for cefpirome-resistant clinical isolates. The synergies of Syn2190 plus ceftazidime or cefpirome observed in vitro were also reflected in vivo. Syn2190 improved the efficacies of both cephalosporins in both a murine systemic infection model with cephalosporin-resistant rods and urinary tract infection models with cephalosporin-resistant P. aeruginosa.

2009 ◽  
Vol 53 (9) ◽  
pp. 3777-3781 ◽  
Author(s):  
Colin S. Osborne ◽  
Georg Neckermann ◽  
Evelin Fischer ◽  
Robert Pecanka ◽  
Donghui Yu ◽  
...  

ABSTRACT LBM415 is an antibacterial agent belonging to the peptide deformylase inhibitor class of compounds. It has previously been shown to demonstrate good activity in vitro against a range of pathogens. In this study, the in vivo efficacy of LBM415 was evaluated in various mouse infection models. We investigated activity against a systemic infection model caused by intraperitoneal inoculation of Staphylococcus aureus (methicillin [meticillin] susceptible [MSSA] and methicillin resistant [MRSA]) and Streptococcus pneumoniae (penicillin susceptible [PSSP] and multidrug resistant [MDRSP]), a thigh infection model caused by intramuscular injection of MRSA, and a lung infection produced by intranasal inoculation of PSSP. In the systemic MSSA and MRSA infections, LBM415 was equivalent to linezolid and vancomycin. In the systemic PSSP infection, LBM415 was equivalent to linezolid, whereas against systemic MDRSP infection, the LBM415 50% effective dose (ED50) was 4.8 mg/kg (dosed subcutaneously) and 36.6 mg/kg (dosed orally), compared to 13.2 mg/kg for telithromycin and >60 mg/kg for penicillin V and clarithromycin. In the MRSA thigh infection, LBM415 significantly reduced thigh bacterial levels compared to those of untreated mice, with levels similar to those after treatment with linezolid at the same dose levels. In the pneumonia model, the ED50 to reduce the bacterial lung burden by >4 log10 in 50% of treated animals was 23.3 mg/kg for LBM415, whereas moxifloxacin showed an ED50 of 14.3 mg/kg. In summary, LBM415 showed in vivo efficacy in sepsis and specific organ infection models irrespective of resistance to other antibiotics. Results suggest the potential of peptide deformylase inhibitors as a novel class of therapeutic agents against antibiotic-resistant pathogens.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


1985 ◽  
Vol 106 (2) ◽  
pp. 153-157
Author(s):  
N. Bagchi ◽  
T. R. Brown

ABSTRACT It has been reported that prior exposure of thyroid tissue to TSH in vitro induces a state of refractoriness to new challenges of the hormone. We have investigated the effect of repeated TSH treatment on thyroid secretion to determine whether such refractoriness exists in vivo. The rate of thyroid secretion was estimated by measuring the rate of hydrolysis of labelled thyroglobulin from mouse thyroid glands in vitro. The thyroid glands were labelled in vivo with 131I and then cultured for 20 h in the presence of mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the percentage of radioactivity released as free iodotyrosines and iodothyronines into the gland and the medium at the end of incubation. Thyrotrophin was administered in vivo at hourly intervals for 2–4 injections. The corresponding control group received saline injections every hour except for the last injection when they received TSH. The peak rates of thyroglobulin hydrolysis, measured 2 h following the last injection, were similar in animals receiving two, three or four TSH injections and were not different from those in the control groups. Serum tri-iodothyronine and thyroxine concentrations 2 h after the last injection were higher in the groups receiving multiple TSH injections. Thyroidal cyclic AMP accumulation in response to TSH was markedly depressed in the group receiving multiple injections compared with the group receiving a single injection of TSH in vivo. These data indicate that (1) the stimulatory effect of TSH on thyroidal secretion is not diminished by prior administration of the hormone in vivo, (2) repeated TSH administrations in vivo cause refractoriness of the adenylate cyclase response to TSH and (3) a dichotomy exists between the secretory response and the adenylate cyclase response to repeated administrations of TSH. J. Endocr. (1985) 106, 153–157


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S418-S418 ◽  
Author(s):  
Akinobu Ito ◽  
Merime Ota ◽  
Rio Nakamura ◽  
Masakatsu Tsuji ◽  
Takafumi Sato ◽  
...  

Abstract Background Cefiderocol (S-649266, CFDC) is a novel siderophore cephalosporin against Gram-negatives, including carbapenem (CR)-resistant strains. Its spectrum includes both the Enterobacteriaceae but also nonfermenters, including Stenotrophomonas maltophilia—an opportunistic pathogen with intrinsic resistance to carbapenem antibiotics. In this study, in vitro activity and in vivo efficacy of CFDC and comparators against S. maltophilia were determined. Methods MICs of CFDC and comparators (trimethoprim/sulfamethoxazole (TMP/SMX), minocycline (MINO), tigecycline (TGC), ciprofloxacin (CPFX), cefepime (CFPM), meropenem (MEPM), and colistin (CL)) were determined by broth microdilution method as recommended by CLSI. The MIC against CFDC was determined using iron-depleted cation-adjusted Mueller–Hinton broth. In vivo efficacy of CFDC, CFPM, ceftazidime–avibactam (CAZ/AVI), MEPM, and CL was evaluated using neutropenic murine systemic infection model caused by strain SR21970. The 50% effective doses (ED50s) were calculated by the logit method using the survival number at each dose 7 days after infection. Results MIC90 of CFDC and comparators against the 216 clinical isolates from global countries collected in SIDERO-CR 2014/2016 study are shown in the table. CFDC, TMP/SMX, MINO, and TGC showed good activity with MIC90 of 0.5, 0.25/4.75, 1, and 2 µg/mL, respectively. CFDC, MINO, and TGC inhibited growth of all tested strains at ≤1, ≤4, and ≤8 µg/mL although two strains showed resistance to TMP/SMX. MICs of CFPM, CAZ/AVI, MEPM, and CL were ≥32 µg/mL. The ED50 of CFDC against S. maltophilia SR21970 with MIC of 0.125 mg/mL was 1.17 mg/kg/dose. Conversely, MICs of CFPM, CAZ/AVI, MEPM/CS, and CL against SR21970 were 32 μg/mL or higher, and ED50s were >100 mg/kg/dose, showing that CFDC had potent in vivo efficacy against S. maltophilia strain which was resistant to other antibiotics. Conclusion CFDC showed potent in vitro activity against S. maltophilia, including TMP/SMX-resistant isolates. CFDC also showed potent in vivo efficacy reflecting in vitro activity against S. maltophilia in murine systemic infection model. Disclosures A. Ito, Shionogi & Co., Ltd.: Employee, Salary. M. Ota, Shionogi & Co., Ltd.: Employee, Salary. R. Nakamura, Shionogi & Co., Ltd.: Employee, Salary. M. Tsuji, Shionogi & Co., Ltd.: Employee, Salary. T. Sato, Shionogi & Co., Ltd.: Employee, Salary. Y. Yamano, Shionogi & Co., Ltd.: Employee, Salary.


2018 ◽  
Vol 86 (11) ◽  
Author(s):  
Faye C. Morris ◽  
Timothy J. Wells ◽  
Jack A. Bryant ◽  
Anna E. Schager ◽  
Yanina R. Sevastsyanovich ◽  
...  

ABSTRACTMutations in σE-regulated lipoproteins have previously been shown to impact bacterial viability under conditions of stress and duringin vivoinfection. YraP is conserved across a number of Gram-negative pathogens, includingNeisseria meningitidis, where the homolog is a component of the Bexsero meningococcal group B vaccine. Investigations using laboratory-adaptedEscherichia coliK-12 have shown thatyraPmutants have elevated sensitivity to a range of compounds, including detergents and normally ineffective antibiotics. In this study, we investigate the role of the outer membrane lipoprotein YraP in the pathogenesis ofSalmonella entericaserovar Typhimurium. We show that mutations inS. TyphimuriumyraPresult in a defective outer membrane barrier with elevated sensitivity to a range of compounds. This defect is associated with attenuated virulence in an oral infection model and during the early stages of systemic infection. We show that this attenuation is not a result of defects in lipopolysaccharide and O-antigen synthesis, changes in outer membrane protein levels, or the ability to adhere to and invade eukaryotic cell linesin vitro.


1984 ◽  
Vol 30 (2) ◽  
pp. 192-195 ◽  
Author(s):  
M H Abernethy ◽  
P M George ◽  
V E Melton

Abstract We describe a new method for measuring the in vitro rate of hydrolysis of the muscle relaxant succinylcholine. This substrate is hydrolyzed by plasma cholinesterase (EC 3.1.1.8). The resulting choline is determined by measuring the hydrogen peroxide formed on its oxidation by choline oxidase (EC 1.1.3.17). This is done by use of phenol and aminoantipyrine coupled to peroxidase, and yields an intense chromophore, Amax 500 nm. The assay requires 0.1 mL of plasma, and is precise and specific. The CV was 2.7% within run, 7.3% between run. For the usual (U variant) enzyme the Km is 53 mumol/L. Enzyme activity is removed by anticholinesterase antiserum, and is inhibited by dibucaine with a Ki of 2 mumol/L. Ten samples can be assayed in duplicate in an hour. This method is suited to routine use in any laboratory that has a simple spectrophotometer. The mean activity in 11 individuals with the cholinesterase phenotype UU was 105 U/L, for seven UA heterozygotes 61 U/L, and for three AA homozygotes 4 U/L. To the extent allowed by extrapolation from in vitro to in vivo results, this method should increase diagnostic accuracy and may directly predict duration of succinylcholine-induced apnea.


2020 ◽  
Vol 21 (13) ◽  
pp. 1301-1312 ◽  
Author(s):  
Sandeep K. Shukla ◽  
Ajay K. Sharma ◽  
Vanya Gupta ◽  
Aman Kalonia ◽  
Priyanka Shaw

: Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. : This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.


2013 ◽  
Vol 58 (2) ◽  
pp. 1005-1018 ◽  
Author(s):  
M. Agudelo ◽  
C. A. Rodriguez ◽  
C. A. Pelaez ◽  
O. Vesga

ABSTRACTSeveral studies with animal models have demonstrated that bioequivalence of generic products of antibiotics like vancomycin, as currently defined, do not guarantee therapeutic equivalence. However, the amounts and characteristics of impurities and degradation products in these formulations do not violate the requirements of the U.S. Pharmacopeia (USP). Here, we provide experimental data with three generic products of meropenem that help in understanding how these apparently insignificant chemical differences affect thein vivoefficacy. Meropenem generics were compared with the innovatorin vitroby microbiological assay, susceptibility testing, and liquid chromatography/mass spectrometry (LC/MS) analysis andin vivowith the neutropenic guinea pig soleus infection model (Pseudomonas aeruginosa) and the neutropenic mouse thigh (P. aeruginosa), brain (P. aeruginosa), and lung (Klebisella pneumoniae) infection models, adding the dihydropeptidase I (DHP-I) inhibitor cilastatin in different proportions to the carbapenem. We found that the concentration and potency of the active pharmaceutical ingredient,in vitrosusceptibility testing, and mouse pharmacokinetics were identical for all products; however, two generics differed significantly from the innovator in the guinea pig and mouse models, while the third generic was therapeutically equivalent under all conditions. Trisodium adducts in a bioequivalent generic made it more susceptible to DHP-I hydrolysis and less stable at room temperature, explaining its therapeutic nonequivalence. We conclude that the therapeutic nonequivalence of generic products of meropenem is due to greater susceptibility to DHP-I hydrolysis. These failing generics are compliant with USP requirements and would remain undetectable under current regulations.


2008 ◽  
Vol 76 (8) ◽  
pp. 3577-3586 ◽  
Author(s):  
Thomas A. Russo ◽  
Janet M. Beanan ◽  
Ruth Olson ◽  
Ulrike MacDonald ◽  
Nicole R. Luke ◽  
...  

ABSTRACT Acinetobacter baumannii is a bacterial pathogen of increasing medical importance. Little is known about its mechanisms of pathogenesis, and safe reliable agents with predictable activity against A. baumannii are presently nonexistent. The availability of relevant animal infection models will facilitate the study of Acinetobacter biology. In this report we tested the hypothesis that the rat pneumonia and soft-tissue infection models that our laboratory had previously used for studies of extraintestinal pathogenic Escherichia coli were clinically relevant for A. baumannii. Advantages of these models over previously described models were that the animals were not rendered neutropenic and they did not receive porcine mucin with bacterial challenge. Using the A. baumannii model pathogen 307-0294 as the challenge pathogen, the pneumonia model demonstrated all of the features of infection that are critical for a clinically relevant model: namely, bacterial growth/clearance, an ensuing host inflammatory response, acute lung injury, and, following progressive bacterial proliferation, death due to respiratory failure. We were also able to demonstrate growth of 307-0294 in the soft-tissue infection model. Next we tested the hypothesis that the soft-tissue infection model could be used to discriminate between the inherent differences in virulence of various A. baumannii clinical isolates. The ability of A. baumannii to grow and/or be cleared in this model was dependent on the challenge strain. We also hypothesized that complement is an important host factor in protecting against A. baumannii infection in vivo. In support of this hypothesis was the observation that the serum sensitivity of various A. baumannii clinical isolates in vitro roughly paralleled their growth/clearance in the soft-tissue infection model in vivo. Lastly we hypothesized that the soft-tissue infection model would serve as an efficient screening mechanism for identifying gene essentiality for drug discovery. Random mutants of 307-0294 were initially screened for lack of growth in human ascites in vitro. Selected mutants were subsequently used for challenge in the soft-tissue infection model to determine if the disrupted gene was essential for growth in vivo. Using this approach, we have been able to successfully identify a number of genes essential for the growth of 307-0294 in vivo. In summary, these models are clinically relevant and can be used to study the innate virulence of various Acinetobacter clinical isolates and to assess potential virulence factors, vaccine candidates, and drug targets in vivo and can be used for pharmacokinetic and chemotherapeutic investigations.


1996 ◽  
Vol 315 (3) ◽  
pp. 947-952 ◽  
Author(s):  
S Lusa ◽  
M Myllarniemi ◽  
K Volmonen ◽  
M Vauhkonen ◽  
P Somerharju

The hydrolysis of pyrenylacyl phosphatidylcholines (PyrnPCs) (n indicates the number of aliphatic carbons in the pyrene-chain) by crude lysosomal phospholipases in vitro was investigated. PyrnPCs consist of several sets in which the length of the pyrene-labelled or the unlabelled acyl chain, linked to the sn-1 or sn-2 position, was systematically varied. Lysophosphatidylcholine and fatty acid were the only fluorescent breakdown products detected, thus indicating that PyrnPCs were degraded by A-type phospholipases and lysophospholipases. Of these, mainly A1-type phospholipases appear to be involved, as determined from the relative amounts of labelled fatty acid and lysolipid released from the positional isomers. Based on the effects of the length and position of the pyrene-labelled and unlabelled chains it is suggested that (1) the lysosomal A-type phospholipases acting on PyrnPCs recognize the carboxy-terminal part of the lipid acyl chains and (2) the relevant part of the binding site is relatively narrow. Thus phospholipids with added bulk in the corresponding region, such as those that are peroxidized and polymerized, may not be good substrates for the lysosomal phospholipases mentioned. The impaired hydrolysis of the most hydrophobic PyrnPCs indicates that lysosomal phospholipases may not be able to penetrate significantly into the substrate interphase, but upward movement of the lipid may be required for efficient hydrolysis. Finally, the rate of hydrolysis of many pyrenyl derivatives was found to be comparable to that of a natural phosphatidylcholine species, both in micelles and in lipoprotein particles, indicating that these derivatives can be used as faithful reporters of lysosomal degradation of natural lipids in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document