scholarly journals Surveillance for Antimicrobial Susceptibility among Clinical Isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from Hospitalized Patients in the United States, 1998 to 2001

2003 ◽  
Vol 47 (5) ◽  
pp. 1681-1688 ◽  
Author(s):  
James A. Karlowsky ◽  
Deborah C. Draghi ◽  
Mark E. Jones ◽  
Clyde Thornsberry ◽  
Ian R. Friedland ◽  
...  

ABSTRACT Pseudomonas aeruginosa and Acinetobacter baumannii are the most prevalent nonfermentative bacterial species isolated from clinical specimens of hospitalized patients. A surveillance study of 65 laboratories in the United States from 1998 to 2001 found >90% of isolates of P. aeruginosa from hospitalized patients to be susceptible to amikacin and piperacillin-tazobactam; 80 to 90% of isolates to be susceptible to cefepime, ceftazidime, imipenem, and meropenem; and 70 to 80% of isolates to be susceptible to ciprofloxacin, gentamicin, levofloxacin, and ticarcillin-clavulanate. From 1998 to 2001, decreases in antimicrobial susceptibility (percents) among non-intensive-care-unit (non-ICU) inpatients and ICU patients, respectively, were greatest for ciprofloxacin (6.1 and 6.5), levofloxacin (6.6 and 3.5), and ceftazidime (4.8 and 3.3). Combined 1998 to 2001 results for A. baumannii isolated from non-ICU inpatients and ICU patients, respectively, demonstrated that >90% of isolates tested were susceptible to imipenem (96.5 and 96.6%) and meropenem (91.6 and 91.7%); fewer isolates from both non-ICU inpatients and ICU patients were susceptible to amikacin and ticarcillin-clavulanate (70 to 80% susceptible); and <60% of isolates were susceptible to ceftazidime, ciprofloxacin, gentamicin, or levofloxacin. From 1998 to 2001, rates of multidrug resistance (resistance to at least three of the drugs ceftazidime, ciprofloxacin, gentamicin, and imipenem) showed small increases among P. aeruginosa strains isolated from non-ICU inpatients (5.5 to 7.0%) and ICU patients (7.4 to 9.1%). From 1998 to 2001, rates of multidrug resistance among A. baumannii strains isolated from non-ICU inpatients (27.6 to 32.5%) and ICU patients (11.6 to 24.2%) were higher and more variable than those observed for P. aeruginosa. Isolates concurrently susceptible, intermediate, or resistant to both imipenem and meropenem accounted for 89.8 and 91.2% of P. aeruginosa and A. baumannii isolates, respectively, studied from 1998 to 2001. In conclusion, for aminoglycosides and most β-lactams susceptibility rates for P. aeruginosa and A. baumannii were constant or decreased only marginally (≤3%) from 1998 to 2001. Greater decreases in susceptibility rates were, however, observed for fluoroquinolones and ceftazidime among P. aeruginosa isolates.

2003 ◽  
Vol 47 (5) ◽  
pp. 1672-1680 ◽  
Author(s):  
James A. Karlowsky ◽  
Mark E. Jones ◽  
Clyde Thornsberry ◽  
Ian R. Friedland ◽  
Daniel F. Sahm

ABSTRACT Longitudinal surveillance of Enterobacteriaceae for antimicrobial susceptibility is important because species of this family are among the most significant and prevalent human pathogens. To estimate rates of in vitro antimicrobial susceptibility among hospitalized patients in the United States, data from The Surveillance Network were studied for 14 agents tested against 10 species of Enterobacteriaceae (n = 384,279) isolated from intensive-care-unit (ICU) patients and non-ICU inpatients from 1998 to 2001. Cumulative susceptibility (percent) data for all species of Enterobacteriaceae isolated from ICU patients and non-ICU inpatients, respectively, were ranked as follows: ampicillin-sulbactam (45.5 and 57.2) ≪ ticarcillin-clavulanate (74.8 and 83.5) < trimethoprim-sulfamethoxazole (87.0 and 84.5) ≅ cefotaxime (82.9 and 92.6) = ceftazidime (82.3 and 91.0) = ceftriaxone (86.5 and 93.9) = piperacillin-tazobactam (83.5 and 90.5) < levofloxacin (89.3 and 90.6) = ciprofloxacin (91.0 and 91.7) < gentamicin (91.8 and 94.3) < cefepime (95.0 and 97.9) < amikacin (98.5 and 99.2) < imipenem (100 and 100) = meropenem (100 and 100). Of those agents studied only susceptibilities to ciprofloxacin (94 to 89%) and levofloxacin (93 to 89%) decreased in a stepwise manner from 1998 to 2001. Decreased fluoroquinolone susceptibility was most pronounced for Escherichia coli, Proteus mirabilis, and Enterobacter cloacae. For all species of Enterobacteriaceae, trimethoprim-sulfamethoxazole resistance was more commonly observed in isolates with a single-drug resistance phenotype while gentamicin and fluoroquinolone resistances were more common in isolates resistant to at least one additional class of antimicrobial agent. Ongoing surveillance of Enterobacteriaceae will be particularly important to monitor changes in fluoroquinolone susceptibility, as well as changes in the prevalence of isolates resistant to multiple classes of antimicrobial agents.


2016 ◽  
Vol 54 (8) ◽  
pp. 2109-2119 ◽  
Author(s):  
Nandita S. Mirajkar ◽  
Peter R. Davies ◽  
Connie J. Gebhart

Outbreaks of swine dysentery, caused byBrachyspira hyodysenteriaeand the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multipleBrachyspiraspecies have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of fourBrachyspiraspecies originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility ofB. hyodysenteriae,B. hampsonii,Brachyspira pilosicoli, andBrachyspira murdochiito tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general,Brachyspiraspecies showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii>B. hyodysenteriae>B. murdochii>B. pilosicoli). In general,Brachyspiraisolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints forBrachyspiraspecies, to facilitate informed therapeutic and control strategies.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Bin Cai ◽  
Roger Echols ◽  
Glenn Magee ◽  
Juan Camilo Arjona Ferreira ◽  
Gareth Morgan ◽  
...  

Abstract Background Carbapenem-resistant (CR) Gram-negative pathogens are recognized as a major health concern. This study examined the prevalence of infections due to 4 CR Gram-negative species (Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli) in the United States and assessed their impact on hospital stays and mortality. Methods Hospitalized patients with laboratory-confirmed infection due to any of the 4 Gram-negative pathogens were identified from the Premier Healthcare Database. Proportions of CR were calculated by pathogen and infection site (blood, respiratory, urinary, or other) for the United States as whole and by census regions. Crude and adjusted odds ratios for in-hospital mortality were produced using logistic regression. Results From 2009 to 2013, 13 262 (4.5%) of 292 742 infections due to these 4 Gram-negative pathogens were CR. Of these CR infections, 82.3% were caused by A. baumannii (22%) or P. aeruginosa (60.3%), while 17.7% were caused by K. pneumoniae or E. coli. CR patients had longer hospital stays than carbapenem-susceptible (CS) patients in all pathogen-infection site cohorts, except in the A. baumannii-respiratory cohort. The crude all cause in-hospital mortality was greater for most pathogen-infection site cohorts of the CR group compared with the CS group, especially for A. baumannii infection in the blood (crude odds ratio [OR], 3.91; 95% confidence interval [CI], 2.69–5.70). This difference for the A. baumannii-blood cohort remained after adjusting for the relevant covariates (adjusted OR, 2.46; 95% CI, 1.43–4.22). Conclusion The majority of CR infections and disease burden in the United States was caused by nonfermenters A. baumannii and P. aeruginosa. Patients with CR infections had longer hospital stays and higher crude in-hospital mortality.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S195-S195
Author(s):  
Naeemah Z Logan ◽  
Beth E Karp ◽  
Kaitlin A Tagg ◽  
Claire Burns-Lynch ◽  
Jessica Chen ◽  
...  

Abstract Background Multidrug-resistant (MDR) Shigella sonnei infections are a serious public health threat, and outbreaks are common among men who have sex with men (MSM). In February 2020, Australia’s Department of Health notified CDC of extensively drug-resistant (XDR) S. sonnei in 2 Australian residents linked to a cruise that departed from Florida. We describe an international outbreak of XDR S. sonnei and report on trends in MDR among S. sonnei in the United States. Methods Health departments (HDs) submit every 20th Shigella isolate to CDC’s National Antimicrobial Resistance Monitoring System (NARMS) laboratory for susceptibility testing. We defined MDR as decreased susceptibility to azithromycin (MIC ≥32 µg/mL) with resistance to ampicillin, ciprofloxacin, and cotrimoxazole, and XDR as MDR with additional resistance to ceftriaxone. We used PulseNet, the national subtyping network for enteric disease surveillance, to identify US isolates related to the Australian XDR isolates by short-read whole genome sequencing. We screened these isolates for resistance determinants (ResFinder v3.0) and plasmid replicons (PlasmidFinder) and obtained patient histories from HDs. We used long-read sequencing to generate closed plasmid sequences for 2 XDR isolates. Results NARMS tested 2,781 S. sonnei surveillance isolates during 2011–2018; 80 (2.9%) were MDR, including 1 (0.04%) that was XDR. MDR isolates were from men (87%), women (9%), and children (4%). MDR increased from 0% in 2011 to 15.3% in 2018 (Figure). In 2020, we identified XDR isolates from 3 US residents on the same cruise as the Australians. The US residents were 41–42 year-old men; 2 with available information were MSM. The US and Australian isolates were highly related (0–1 alleles). Short-read sequence data from all 3 US isolates mapped to the blaCTX-M-27 harboring IncFII plasmids from the 2 Australian isolates with &gt;99% nucleotide identity. blaCTX-M-27 genes confer ceftriaxone resistance. Increase in Percentage of Shigella sonnei Isolates with Multidrug Resistance* in the United States, 2011–2018† Conclusion MDR S. sonnei is increasing and is most often identified among men. XDR S. sonnei infections are emerging and are resistant to all recommended antibiotics, making them difficult to treat without IV antibiotics. This outbreak illustrates the alarming capacity for XDR S. sonnei to disseminate globally among at-risk populations, such as MSM. Disclosures All Authors: No reported disclosures


CHEST Journal ◽  
2012 ◽  
Vol 142 (4) ◽  
pp. 727A
Author(s):  
Mihaela Stefan ◽  
Penelope Pekow ◽  
Meng-Shiou Shieh ◽  
Michael Rothberg ◽  
Jay Steingrub ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document