scholarly journals Integron Content of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains over 12 Years in a Single Hospital in Madrid, Spain

2005 ◽  
Vol 49 (5) ◽  
pp. 1823-1829 ◽  
Author(s):  
Elisabete Machado ◽  
Rafael Cantón ◽  
Fernando Baquero ◽  
Juan-Carlos Galán ◽  
Azucena Rollán ◽  
...  

ABSTRACT The contribution of integrons to the dissemination of extended-spectrum β-lactamases (ESBL) was analyzed on all ESBL-producing Escherichia coli isolates from 1988 to 2000 at Ramón y Cajal Hospital. We studied 133 E. coli pulsed-field gel electrophoresis types: (i) 52 ESBL-producing clinical strains (C-ESBL) (16 TEM, 9 SHV, 21 CTX-M-9, 1 CTX-M-14, and 5 CTX-M-10); (ii) 43 non-ESBL blood clinical strains (C-nESBL); and (iii) 38 non-ESBL fecal isolates from healthy volunteers (V-nESBL). Class 1 integrons were more common among C-ESBL (67%) than among C-nESBL (40%) or V-nESBL (26%) (P < 0.001) due to the high number of strains with bla CTX-M-9 , which is linked to an In6-like class 1 integron. Without this bias, class 1 integron occurrence would be similar in C-ESBL and C-nESBL groups (47% versus 40%). Occurrence of class 2 integrons was similar among clinical and community isolates (13 to 18%). No isolates contained class 3 integrons. The relatively low rate of class 1 integrons within transferable elements carrying blaTEM (23%) or blaSHV (33%) and the absence of class 2 integrons in all ESBL transconjugants mirror the assembly of translocative pieces containing blaTEM or blaSHV on local available transferable elements lacking integrons. The low diversity of class 1 integrons (seven types recovered in all groups) might indicate a wide dissemination of specific genetic elements in which they are located. In our environment, the spread of genetic elements encoding ESBL has no major impact on the dispersion of integrons, nor do integrons have a major impact on the spread of ESBL, except when blaESBL genes are within an integron platform such as bla CTX-M-9 .

2015 ◽  
Vol 78 (8) ◽  
pp. 1442-1450 ◽  
Author(s):  
KANJANA CHANGKAEW ◽  
APIRADEE INTARAPUK ◽  
FUANGFA UTRARACHKIJ ◽  
CHIE NAKAJIMA ◽  
ORASA SUTHIENKUL ◽  
...  

Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)–producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.


2018 ◽  
Vol 16 (5) ◽  
pp. 319-327
Author(s):  
Atchariya YOSBOONRUANG ◽  
Anong KIDDEE ◽  
Chatsuda BOONDUANG ◽  
Phannarai PIBALPAKDEE

Escherichia coli is a serious cause of a variety of hospital-acquired infections and commonly contributes to the environment by house flies. Integrons, particularly class 1 integrons, are the genetic elements that play an important role in the horizontal transfer of antimicrobial resistance mechanism. This mechanism is commonly found in Enterobacteriaceae, especially E. coli. In this study, we aim to investigate the occurrence and antimicrobial resistance patterns of E. coli isolated from the house flies in Phayao hospital and to determine the gene expression of class 1 integrons in those isolates of E. coli. Totally, 70 isolates of E. coli were isolated from 60 house flies collected from the hospital. Fifty-seven of the isolates (81.43 %) were multidrug resistance (MDR) and highly resistant to b-lactams, tetracyclines, and sulfonamides. Of 57 isolates of MDR-E. coli, 20 isolates (35 %) were found to carry class 1 integron genes. Fifteen patterns of antimicrobial resistance occurred in the isolates of integron-positive E. coli. Most integron-positive E. coli isolates were resistant to 7 antimicrobials. Two isolates of these bacteria (10 %) were able to resist 13 out of 14 tested antimicrobials. Using PCR and sequencing analysis, an investigation showed that dfrA17-aadA5, dfrA12-aadA2 gene cassette was the most prevalent cassette (n = 10; 50 %) among the integron-positive E. coli isolates. Our results indicated that the presences of multidrug resistance and class 1 integrons were common in E. coli isolated from the houseflies in hospital. Therefore, screening for integron-positive E. coli from the hospital environment might be necessary for prevention of nosocomial infections.


2014 ◽  
Vol 8 (06) ◽  
pp. 774-779 ◽  
Author(s):  
Christiana Inwezerua ◽  
Nuno Mendonça ◽  
Vera Calhau ◽  
Sara Domingues ◽  
Olufemi Ezekiel Adeleke ◽  
...  

Introduction: The main objective of the study was the molecular characterization of extended spectrum β-lactamases (ESBL) in Escherichia coli isolates collected from human and bovine samples in Oyo state, Nigeria. Methodology: Between August 2010-2011, 114 E. coli isolates were collected from hospitals (n = 57) and bovine (n = 57). PCR and sequencing were used for identification of ESBLs, upstream sequences, plasmid-mediated quinolone resistance (PMQR) genes and class 1 integrons. Plasmid incompatibility groups were identified among ESBL-positive isolates by PCR. Genetic relatdness was assessed by rep-PCR and MLST. Transfer of ESBL determinants to the recipient strain E. coli J53 was performed by broth mating assays. Results: CTX-M15 was the unique ESBL found in eight human isolates. Six CTX-M-15 producers also carry the aac(6’)-lb-cr gene and/or qnrB gene, and class 1 integrons. FIA, FIB, H11, H12, F, Y and K were the plasmid replicon types found. CTX-M-15 and PMQR determinants were transferred by conjugation in two E. coli assigned by MLST to ST131 and ST2695, a new allele. Conclusions: The study highlights the dissemination hability of CTX-M-15 associated with PMQR, and the presence of class 1 integrons, able to capture additional genes, justifying the urgent need of antimicrobial resistance surveillance in Nigeria.


2017 ◽  
Vol 80 (11) ◽  
pp. 1877-1881 ◽  
Author(s):  
Leila Ben Said ◽  
Mouna Hamdaoui ◽  
Ahlem Jouini ◽  
Abdellatif Boudabous ◽  
Karim Ben Slama ◽  
...  

ABSTRACT The purpose of this study was to determine the carriage rate of Escherichia coli isolates in seafood, to analyze the phenotype and genotype of antimicrobial resistance in the recovered isolates, and to characterize extended-spectrum β-lactamase (ESBL) E. coli producers. E. coli isolates were recovered from 24 (34.3%) of the 70 seafood samples analyzed, and one isolate per sample was further characterized. Antibiotic resistance was determined by the disk diffusion method in the 24 isolates, with the following results (number of resistant isolates): tetracycline (8), streptomycin (7), ampicillin (6), trimethoprim-sulfamethoxazole (4), chloramphenicol (4), ciprofloxacin (3), cefotaxime (2), and ceftazidime (2). Six isolates showed a multiresistant phenotype (including at least three families of antibiotics). Among tetracycline-resistant E. coli isolates, tet(A) was detected in five isolates and tet(B) in two isolates. The qnr(A) or aac(6′)-1b-cr genes were detected in two ciprofloxacin-resistant E. coli isolates, and the sul2 gene in two trimethoprim-sulfamethoxazole–resistant isolates. ESBL-containing E. coli isolates, carrying the blaCTX-M-1 gene, were detected in 2 of the 70 seafood samples, obtained from gilt-head bream aquaculture. The ESBL isolates were typed phylogenetically and by multilocus sequence typing, and they were ascribed to lineage ST48/A and to the new ST3497/B1; these isolates carried the fimA, aer, and papGIII virulence genes. One of the ESBL-producing E. coli isolates carried an unusual class 1 integron (with the array dfr32-ereA-aadA1). Seafood could be a source of multiresistant E. coli isolates for the aquatic environment, and these could enter the food chain.


2006 ◽  
Vol 50 (12) ◽  
pp. 4224-4228 ◽  
Author(s):  
Jean-Philippe Lavigne ◽  
Hélène Marchandin ◽  
Julien Delmas ◽  
Nicole Bouziges ◽  
Evelyne Lecaillon ◽  
...  

ABSTRACT By PCR, we screened for qnr genes 112 clinical isolates of extended-spectrum β-lactamase-producing Escherichia coli collected from hospitals in France during 2004. For the first time, 7.7% of CTX-M-producing E. coli isolates presented a plasmid-mediated resistance to quinolones. All strains harbored a qnrA gene located on a sul1-type class 1 integron with similar structure to the In36 integron.


2019 ◽  
Vol 12 (7) ◽  
pp. 1167-1174 ◽  
Author(s):  
Samah Eid ◽  
Abdel Hafeez Samir

Aim: This study aimed to investigate the prevalence and implication of extended-spectrum beta-lactamase (ESBL) producing and Class 1 integrons (int1) gene carriers Escherichia coli isolates that demonstrated multidrug resistance (MDR) phenotypes and was isolated from turkeys that suffered from respiratory manifestation. Materials and Methods: A total of 120 freshly dead turkey poults that suffered from respiratory manifestations, with a history of treatment failure at Hefna, Belbis, Sharqia (Egypt) were sampled. From each bird lung and liver were aseptically collected and transported for laboratory investigations. Results: Examination of samples collected from 120 freshly dead turkey poults revealed the isolation of coagulase-positive staphylococci, coagulase-negative staphylococci, Campylobacter spp., Salmonella spp., Proteus spp., Pseudomonas spp., Klebsiella spp., and E. coli with the prevalence rates of 12/120 (10%), 30/120 (35%), 17/120 (14.2%), 5/120 (4.1%), 17/120 (14.2%), 6/120 (5%), 7/120 (5.8%), and 18/120 (15%), respectively. E. coli isolates were subjected for serotyping and characterization, while the rest of isolates were preserved to be investigated later in further studies. Serogrouping of E. coli isolates revealed the identification of O119, O6, O8, and O169, while 1/18 isolate was untypable. Studying phenotypic antibiotic susceptibility profiles of isolates revealed that 18/18 (100%) of isolates demonstrated resistance against cefuroxime, tetracycline, and trimethoprim, 16/18 (88.9%) of isolates demonstrated resistance to amoxicillin/ clavulanic acid, enrofloxacin, and norfloxacin, 14/18 (77.8%) of isolates demonstrated resistance to doxycycline and ciprofloxacin, and 9/18 (50%) of isolates showed resistance to gentamycin. Double disk synergy test showed that 6/18 (33.3%), 8/18 (44.4%), and 13/18 (72.2%) of isolates demonstrated the phenotypic pattern of ESBL producers with cefepime, cefotaxime, and ceftriaxone, respectively. Genotypic attributes for beta-lactamase TEM gene and int1 gene were studied by reverse transcriptase-polymerase chain reaction and revealed that 17/18 (94.4%) of isolates were positive for both genes. Embryo lethality test indicated that the 18 studied E. coli isolates were considered primary pathogens. Conclusion: The results revealed that 18/18 (100%) of E. coli isolates demonstrated MDR against three or more antibiotic groups, 9/18 (50%) of isolates showed extensive resistance against the nine tested chemotherapeutic agents from seven antibiotic groups. It is recommended to monitor the circulation of MDR and ESBL-producing pathogens in poultry production in a one health approach, as a preventive measure to mitigate the risk imposed on public health.


2020 ◽  
Vol 28 (2) ◽  
pp. 81
Author(s):  
Raouia Ben Rhouma ◽  
Ahlem Jouini ◽  
Amira Klibi ◽  
Safa Hamrouni ◽  
Aziza Boubaker ◽  
...  

The purpose of this study was to identify <em>Escherichia coli</em> isolates in diarrhoeic and healthy rabbits in Tunisia and characterise their virulence and antibiotic resistance genes. In the 2014-2015 period, 60 faecal samples from diarrhoeic and healthy rabbits were collected from different breeding farms in Tunisia. Susceptibility to 14 antimicrobial agents was tested by disc diffusion method and the mechanisms of gene resistance were evaluated using polymerase chain reaction and sequencing methods. Forty <em>E. coli</em> isolates were recovered in selective media. High frequency of resistance to tetracycline (95%) was detected, followed by different levels of resistance to sulphonamide (72.5%), streptomycin (62.5%), trimethoprim-sulfamethoxazole (60%), nalidixic acid (32.5%), ampicillin (37.5%) and ticarcillin (35%). <em>E. coli</em> strains were susceptible to cefotaxime, ceftazidime and imipenem. Different variants of bla<sub>TEM</sub>, <em>tet</em>, <em>sul</em> genes were detected in most of the strains resistant to ampicillin, tetracycline and sulphonamide, respectively. The presence of class 1 integron was studied in 29 sulphonamide-resistant <em>E. coli</em> strains from which 15 harboured class 1 integron with four different arrangements of gene cassettes, <em>dfrA17</em>+<em>aadA5</em> (n=9), <em>dfrA1</em> + <em>aadA1</em> (n=4), <em>dfrA12</em> + <em>addA2</em> (n=1), <em>dfrA12</em>+<em>orf</em>+<em>addA2</em> (n=1). The <em>qnrB</em> gene was detected in six strains out of 13 quinolone-resistant <em>E. coli</em> strains. Seventeen <em>E. coli</em> isolates from diarrhoeic rabbits harboured the enteropathogenic eae genes associated with different virulence genes tested (<em>fimA</em>, <em>cnf1</em>, <em>aer</em>), and affiliated to B2 (n=8) and D (n=9) phylogroups. Isolated <em>E. coli</em> strains from healthy rabbit were harbouring <em>fim A</em> and/or <em>cnf1</em> genes and affiliated to A and B1 phylogroups. This study showed that <em>E. coli</em> strains from the intestinal tract of rabbits are resistant to the widely prescribed antibiotics in medicine. Therefore, they constitute a reservoir of antimicrobial-resistant genes, which may play a significant role in the spread of antimicrobial resistance. In addition, the eae virulence gene seemed to be implicated in diarrhoea in breeder rabbits in Tunisia.


2019 ◽  
Vol 82 (3) ◽  
pp. 470-478 ◽  
Author(s):  
HUI CHENG ◽  
HAN JIANG ◽  
JIEHONG FANG ◽  
CHENG ZHU

ABSTRACT Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.


2008 ◽  
Vol 71 (8) ◽  
pp. 1679-1684 ◽  
Author(s):  
M. L. KHAITSA ◽  
J. OLOYA ◽  
D. DOETKOTT ◽  
R. KEGODE

The objective of this study was to quantify the role of class 1 integrons in antimicrobial resistance in Escherichia coli isolated from turkey meat products purchased from retail outlets in the Midwestern United States. Of 242 E. coli isolates, 41.3% (102 of 242) tested positive for class 1 integrons. A significant association was shown between presence of class 1 integrons in E. coli isolates and the resistance to tetracycline, ampicillin, streptomycin, gentamicin, sulfisoxazole, and trimethoprim-sulfamethoxazole. Attributable risk analysis revealed that for every 100 E. coli isolates carrying class 1 integrons, resistance was demonstrated for ampicillin (22%), gentamycin (48%), streptomycin (29%), sulfisoxazole (40%), trimethoprimsulfamethoxazole (7%), and tetracycline (26%). Non–integron-related antimicrobial resistance was demonstrated for ampicillin (65%), gentamycin (16.9%), streptomycin (42.1%), sulfisoxazole (35.8%), and tetracycline (49.7%). Population-attributable fraction analysis showed that class 1 integrons accounted for the following resistances: gentamycin, 71% (50 of 71), amoxicillin–clavulanic acid, 19.6% (6 of 33), nalidixic acid, 34% (7 of 21), streptomycin, 28% (30 of 107), sulfisoxazole, 38% (40 of 106), and tetracycline, 14%, (26 of 185). In conclusion, although class 1 integrons have been implicated in resistance to antimicrobial agents, other non–integron resistance mechanisms seem to play an important part.


2017 ◽  
Vol 80 (3) ◽  
pp. 420-424 ◽  
Author(s):  
Allah Bux Baloch ◽  
Hua Yang ◽  
Yuqing Feng ◽  
Meili Xi ◽  
Qian Wu ◽  
...  

ABSTRACT The aim of this study was to determine the presence and characteristics of Escherichia coli in ready-to-eat (RTE) foods. A total of 300 RTE foods samples were collected in Shaanxi Province, People's Republic of China: 50 samples of cooked meat, 165 samples of vegetable salad, 50 samples of cold noodles, and 35 samples of salted boiled peanuts. All samples were collected during summer (in July to October) 2011 and 2012 and surveyed for the presence of E. coli. E. coli isolates recovered were classified by phylogenetic typing using a PCR assay. The presence of Shiga toxin genes 1 (stx1) and 2 (stx2) was determined for these E. coli isolates by PCR, and all isolates were analyzed for antimicrobial susceptibility and the presence of class 1 integrons. Overall, 267 (89.0%) RTE food samples were positive for E. coli: 49 cold noodle, 46 cooked meat, 150 salad vegetable, and 22 salted boiled peanut samples. Of the 267 E. coli isolates, 73.0% belong to phylogenetic group A, 12.4% to group B1, 6.4% to group B2, and 8.2% to group D. All isolates were negative for both Shiga toxin genes. Among the isolates, 74.2% were resistant to at least one antimicrobial agent, and 17.6% were resistant to three or more antimicrobial agents. Resistance to ampicillin (75.6% of isolates) and tetracycline (73.1% of isolates) was most frequently detected; 26.2% of E. coli isolates and 68.8% of multidrug-resistant E. coli isolates were positive for class 1 integrons. All isolates were sensitive to amikacin. Our findings indicate that RTE foods in Shaanxi were commonly contaminated with antibiotic-resistant E. coli, which may pose a risk for consumer health and for transmission of antibiotic resistance. Future research is warranted to track the contamination sources and develop appropriate steps that should be taken by government, industry, and retailers to reduce microbial contamination in RTE foods.


Sign in / Sign up

Export Citation Format

Share Document