scholarly journals Biodegradation of Polyester Polyurethane by Endophytic Fungi

2011 ◽  
Vol 77 (17) ◽  
pp. 6076-6084 ◽  
Author(s):  
Jonathan R. Russell ◽  
Jeffrey Huang ◽  
Pria Anand ◽  
Kaury Kucera ◽  
Amanda G. Sandoval ◽  
...  

ABSTRACTBioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genusPestalotiopsis, although it was not a universal feature of this genus. TwoPestalotiopsis microsporaisolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation.

2014 ◽  
Vol 80 (21) ◽  
pp. 6677-6684 ◽  
Author(s):  
Youyun Liang ◽  
Tong Si ◽  
Ee Lui Ang ◽  
Huimin Zhao

ABSTRACTSeveral yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases inSaccharomyces cerevisiae. These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Cassandra E. Overney ◽  
Jean J. Huang

ABSTRACT Bacillus megaterium strain O1 was isolated from a soapnut (Sapindus saponaria) surface and degrades Quillaja saponin as a sole carbon source. We report the draft genome sequence of B. megaterium O1, which has an estimated size of 5.1 Mb. Study of this isolate will provide insight into mechanisms of saponin degradation.


2016 ◽  
Vol 60 (6) ◽  
pp. 3608-3616 ◽  
Author(s):  
Julie V. Early ◽  
Allen Casey ◽  
Maria Angeles Martinez-Grau ◽  
Isabel C. Gonzalez Valcarcel ◽  
Michal Vieth ◽  
...  

Mycobacterium tuberculosisis a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity againstM. tuberculosisgrown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity againstM. tuberculosisbut which lacked cytotoxicity against mammalian cells.


2012 ◽  
Vol 78 (15) ◽  
pp. 5375-5383 ◽  
Author(s):  
Nicole Lindenkamp ◽  
Elena Volodina ◽  
Alexander Steinbüchel

ABSTRACTβ-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate,Ralstonia eutrophaH16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. InR. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373–5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA,bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, andpcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-typeR. eutrophaand the mutants. In contrast, during the growth on oleate of a multiple mutant lackingphaA,bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaAand all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.


2015 ◽  
Vol 81 (24) ◽  
pp. 8294-8306 ◽  
Author(s):  
Heba Khairy ◽  
Jan Hendrik Wübbeler ◽  
Alexander Steinbüchel

ABSTRACTFourRhodococcusspp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. BecauseRhodococcus erythropolisstrain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis ofR. erythropolisMI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity ofnoxRandnox. The interruption mutant generated,R. erythropolisMI2noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently,noxwas overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB).


2015 ◽  
Vol 81 (5) ◽  
pp. 1865-1873 ◽  
Author(s):  
Ahmet H. Badur ◽  
Sujit Sadashiv Jagtap ◽  
Geethika Yalamanchili ◽  
Jung-Kul Lee ◽  
Huimin Zhao ◽  
...  

ABSTRACTAlginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases fromVibrio splendidus12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, fromV. splendidus12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s−1, 3.7 ± 0.3 s−1, 4.5 ± 0.5 s−1, and 7.1 ± 0.2 s−1, respectively. TheKmvalues of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers.


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Jennifer M. Bhatnagar ◽  
Grzegorz Sabat ◽  
Daniel Cullen

The conifer needle endophyte Phialocephala scopiformis DAOMC 229536 was cultivated in medium containing ground Pinus contorta wood as the sole carbon source. Mass spectrometry analyses identified 590 proteins.


2017 ◽  
Vol 5 (24) ◽  
Author(s):  
Margaret T. Ho ◽  
Brian Weselowski ◽  
Ze-Chun Yuan

ABSTRACT We report here the complete assembled genome sequence of Acinetobacter calcoaceticus CA16, which is capable of utilizing diesel and lignin as a sole carbon source. CA16 contains a 4,110,074-bp chromosome and a 5,920-bp plasmid. The assembled sequences will help elucidate potential metabolic pathways and mechanisms responsible for CA16’s hydrocarbon degradation ability.


2014 ◽  
Vol 80 (17) ◽  
pp. 5349-5358 ◽  
Author(s):  
Muhammad Afzal ◽  
Sulman Shafeeq ◽  
Oscar P. Kuipers

ABSTRACTComparison of the transcriptome ofStreptococcus pneumoniaestrain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including thelacgene cluster, which is organized into two operons, i.e.,lacoperon I (lacABCD) andlacoperon II (lacTFEG). Deletion of the DeoR family transcriptional regulatorlacRthat is present downstream of thelacgene cluster revealed elevated expression oflacoperon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor oflacoperon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion oflacRdid not affect the expression oflacoperon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZand PlacT-lacZin the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation oflacoperon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator oflacoperon II in the presence of lactose and CcpA-independent regulation of thelacgene cluster inS. pneumoniae.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Ratna Mondal ◽  
Miho Satoh ◽  
Kouhei Ohnishi

We present here the draft genome sequences of four marine bacterial strains which can use ulvan as their sole carbon source. We used ulvan extracted from the green alga Ulva ohnoi. Each bacterium contains a polysaccharide-utilizing locus, which is necessary for the complete degradation of ulvan.


Sign in / Sign up

Export Citation Format

Share Document