scholarly journals Molecular Cloning of Cyanobacterial Pteridine Glycosyltransferases That Catalyze the Transfer of either Glucose or Xylose to Tetrahydrobiopterin

2010 ◽  
Vol 76 (22) ◽  
pp. 7658-7661 ◽  
Author(s):  
Yeol Gyun Lee ◽  
Ae Hyun Kim ◽  
Mi Bi Park ◽  
Hye-Lim Kim ◽  
Kon Ho Lee ◽  
...  

ABSTRACT Here, we report cloning of cyanobacterial genes encoding pteridine glycosyltransferases that catalyze glucosyl or xylosyl transfer from UDP-sugars to tetrahydrobiopterin. The genes were cloned by PCR amplification from genomic DNA which was isolated from culture and environmental samples and overexpressed in Escherichia coli for an in vitro activity assay.

1993 ◽  
Vol 13 (7) ◽  
pp. 4214-4222
Author(s):  
Y Chen ◽  
J Weeks ◽  
M A Mortin ◽  
A L Greenleaf

We have mapped a number of mutations at the DNA sequence level in genes encoding the largest (RpII215) and second-largest (RpII140) subunits of Drosophila melanogaster RNA polymerase II. Using polymerase chain reaction (PCR) amplification and single-strand conformation polymorphism (SSCP) analysis, we detected 12 mutations from 14 mutant alleles (86%) as mobility shifts in nondenaturing gel electrophoresis, thus localizing the mutations to the corresponding PCR fragments of about 350 bp. We then determined the mutations at the DNA sequence level by directly subcloning the PCR fragments and sequencing them. The five mapped RpII140 mutations clustered in a C-terminal portion of the second-largest subunit, indicating the functional importance of this region of the subunit. The RpII215 mutations were distributed more broadly, although six of eight clustered in a central region of the subunit. One notable mutation that we localized to this region was the alpha-amanitin-resistant mutation RpII215C4, which also affects RNA chain elongation in vitro. RpII215C4 mapped to a position near the sites of corresponding mutations in mouse and in Caenorhabditis elegans genes, reinforcing the idea that this region is involved in amatoxin binding and transcript elongation. We also mapped mutations in both RpII215 and RpII140 that cause a developmental defect known as the Ubx effect. The clustering of these mutations in each gene suggests that they define functional domains in each subunit whose alteration induces the mutant phenotype.


Author(s):  
Madubuike Umunna Anyanwu ◽  
Ishmael Festus Jaja ◽  
Obichukwu Chisom Nwobi

The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.


1993 ◽  
Vol 13 (7) ◽  
pp. 4214-4222 ◽  
Author(s):  
Y Chen ◽  
J Weeks ◽  
M A Mortin ◽  
A L Greenleaf

We have mapped a number of mutations at the DNA sequence level in genes encoding the largest (RpII215) and second-largest (RpII140) subunits of Drosophila melanogaster RNA polymerase II. Using polymerase chain reaction (PCR) amplification and single-strand conformation polymorphism (SSCP) analysis, we detected 12 mutations from 14 mutant alleles (86%) as mobility shifts in nondenaturing gel electrophoresis, thus localizing the mutations to the corresponding PCR fragments of about 350 bp. We then determined the mutations at the DNA sequence level by directly subcloning the PCR fragments and sequencing them. The five mapped RpII140 mutations clustered in a C-terminal portion of the second-largest subunit, indicating the functional importance of this region of the subunit. The RpII215 mutations were distributed more broadly, although six of eight clustered in a central region of the subunit. One notable mutation that we localized to this region was the alpha-amanitin-resistant mutation RpII215C4, which also affects RNA chain elongation in vitro. RpII215C4 mapped to a position near the sites of corresponding mutations in mouse and in Caenorhabditis elegans genes, reinforcing the idea that this region is involved in amatoxin binding and transcript elongation. We also mapped mutations in both RpII215 and RpII140 that cause a developmental defect known as the Ubx effect. The clustering of these mutations in each gene suggests that they define functional domains in each subunit whose alteration induces the mutant phenotype.


2001 ◽  
Vol 183 (3) ◽  
pp. 921-927 ◽  
Author(s):  
Georgina Macintyre ◽  
C. Victoria Atwood ◽  
Claire G. Cupples

ABSTRACT Deoxycytosine methylase (Dcm) enzyme activity causes mutagenesis in vitro either directly by enzyme-induced deamination of cytosine to uracil in the absence of the methyl donor,S-adenosylmethionine (SAM), or indirectly through spontaneous deamination of [5-methyl]cytosine to thymine. Using a Lac reversion assay, we investigated the contribution of the first mechanism to Dcm mutagenesis in vivo by lowering the levels of SAM.Escherichia coli SAM levels were lowered by reducing SAM synthetase activity via the introduction of a metK84 allele or by hydrolyzing SAM using the bacteriophage T3 SAM hydrolase. ThemetK84 strains exhibited increased C-to-T mutagenesis. Expression of the T3 SAM hydrolase gene, under the control of the arabinose-inducible PBAD promoter, effectively reduced Dcm-mediated genomic DNA methylation. However, increased mutagenesis was not observed until extremely high arabinose concentrations were used, and genome methylation at Dcm sites was negligible.


1987 ◽  
Vol 242 (3) ◽  
pp. 661-665 ◽  
Author(s):  
E M T el-Mansi ◽  
C MacKintosh ◽  
K Duncan ◽  
W H Holms ◽  
H G Nimmo

A recombinant plasmid carrying an 11 kb restriction-endonuclease-ClaI fragment of genomic DNA from Escherichia coli ML308 was constructed. This plasmid complements an aceA mutation. The plasmid encodes the structural genes of the glyoxylate bypass operon, namely malate synthase A (aceB), isocitrate lyase (aceA) and isocitrate dehydrogenase kinase/phosphatase (aceK), as judged by overexpression of enzyme activities and transcription/translation experiments in vitro. Subcloning confirmed that expression of the aceK gene is essential for growth on acetate.


1985 ◽  
Vol 161 (3) ◽  
pp. 913-920 ◽  
Author(s):  
A Collmer ◽  
C Schoedel ◽  
D L Roeder ◽  
J L Ried ◽  
J F Rissler

Author(s):  
Anna Olsson ◽  
Marcus Hong ◽  
Hissa Al-Farsi ◽  
Christian G. Giske ◽  
Pernilla Lagerbäck ◽  
...  

Objectives. Carbapenemase-producing Enterobacterales pose an increasing medical threat. Combination therapy is often used for severe infections; however, there is little evidence supporting the optimal selection of drugs. This study aimed to determine the in vitro effects of polymyxin B combinations against carbapenemase-producing Escherichia coli . Methods. The interactions of polymyxin B in combination with aztreonam, meropenem, minocycline or rifampicin against 20 clinical isolates of NDM and OXA-48-group-producing E. coli were evaluated using time-lapse microscopy. 24-h samples were spotted on plates with and without 4 x MIC polymyxin B for viable counts. Whole-genome sequencing was applied to identify resistance genes and mutations. Finally, potential associations between combination effects and bacterial genotypes were assessed using Fisher’s exact test. Results. Synergistic and bactericidal effects were observed with polymyxin B and minocycline against 11/20 strains and with polymyxin B and rifampicin against 9/20 strains. The combinations of polymyxin B and aztreonam or meropenem showed synergy against 2/20 strains. Negligible resistance development against polymyxin B was detected. Synergy with polymyxin B and minocycline was associated with genes involved in efflux (presence of tet(B) , wildtype soxR and the marB mutation H44Q) and lipopolysaccharide synthesis ( eptA C27Y, lpxB mutations and lpxK L323S). Synergy with polymyxin B and rifampicin was associated with sequence variations in arnT , which plays a role in lipid A modification. Conclusion. Polymyxin B in combination with minocycline or rifampicin frequently showed positive interactions against NDM- and OXA-48-group-producing E. coli . Synergy was associated with genes encoding efflux and components of the bacterial outer membrane.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Giriyapura Suresha ◽  
Sanjeev Kumar ◽  
Ittiamparambath Santha

AbstractThe synthesis of polyunsaturated fatty acids, the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase-2 (FAD2; EC 1.3.1.35), also called as microsomal Δ12 oleate desaturase. The gene (Bjfad2; GenBank accession No. EF639848) coding for this enzyme from Brassica juncea was previously isolated and characterized. However, functional identity of Bjfad2 was not established. Utilizing the known Bjfad2 cDNA sequence, the ORF of Bjfad2 gene was cloned into the pMAL C2X Escherichia coli expression vector and produced recombinant plasmid by insertion of isolated ORF downstream to the maltose-binding protein coding sequence. The pMALC2X-Bjfad2 vector was used to transform the TB1 strain of E. coli. Induced expression of pMAL-BJFAD2 fused product resulted in the synthesis of a polypeptide with an apparent molecular mass of 80 kDa, which was 8 kDa less than calculated mass as determined by SDS-PAGE, since the fused MalE-Bjfad2 gene contains eight additional codons located between the MalE and Bjfad2 gene. In vitro activity assay of oleate desaturase using the corresponding bacterial crude extracts confirmed that the polypeptide was the product of the Bjfad2 gene. The reaction products analysis of the fatty acid methyl esters by gas chromatography showed the presence of a new peak with a similar retention time to linoleic acid, which was absent in the control activity assay without electron donors. Thus, B. juncea gene has been functionally identified since it encodes the enzyme that catalyzed the desaturation of oleate to linoleate.


Sign in / Sign up

Export Citation Format

Share Document