scholarly journals Unchaining mini Bacillus PG10: relief of FlgM-mediated repression of autolysin genes

Author(s):  
Amanda Y. van Tilburg ◽  
Julius A. Fülleborn ◽  
Alexander Reder ◽  
Uwe Völker ◽  
Jörg Stülke ◽  
...  

Cell chaining in Bacillus subtilis is naturally observed in a subset of cells during exponential growth and during biofilm formation. However, the recently constructed large-scale genome-minimized B. subtilis strain PG10 displays a severe and permanent defect in cell separation, as it exclusively grows in the form of long filaments of non-separated cells. In this study, we investigated the underlying mechanisms responsible for the incomplete cell division of PG10 by genomic and transcriptomic analyses. Repression of the SigD-regulon, including the major autolysin lytF , was identified as the cause for the cell separation problem of PG10. It appeared that SigD-regulated genes are downregulated in PG10 due to the absence of the flagellar export apparatus, which normally is responsible for secretion of FlgM, the anti-sigma factor of SigD. Although mild negative effects on growth and cell morphology were observed, deletion of flgM could revert the aberrant cell chaining phenotype and increased the transformation efficiency. Interestingly, our work also demonstrates the occurrence of increased antisense transcription of slrR , a transcriptional repressor of autolysin genes, in PG10, and provides further understanding for this observation. In addition to revealing the molecular basis of the cell separation defect in PG10, our work provides novel targets for subsequent genome reduction efforts and future directions for further optimization of mini Bacillus PG10. IMPORTANCE Reduction of the size of bacterial genomes is relevant for understanding the minimal requirements for cellular life as well as from a biotechnological point of view. Although the genome-minimized Bacillus subtilis strain PG10 displays several beneficial traits as a microbial cell factory compared to its parental strain, a defect at the final stage of cell division was introduced during the genome reduction process. By genetic and transcriptomic analyses, we identified the underlying reasons for the cell separation problem of PG10. In addition to enabling PG10 to grow in a similar way as B. subtilis wild type strains, our work points towards subsequent targets for fine-tuning and further reduction of the genome of PG10. Moreover, solving the cell separation defect facilitates laboratory handling of PG10 by increasing the transformation efficiency amongst others. Overall, our work contributes to understanding and improving biotechnologically attractive minimal bacterial cell factories.

2019 ◽  
Vol 47 (7) ◽  
pp. e40-e40 ◽  
Author(s):  
Zhenghui Lu ◽  
Shihui Yang ◽  
Xin Yuan ◽  
Yunyun Shi ◽  
Li Ouyang ◽  
...  

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Robert S. Brzozowski ◽  
Brooke R. Tomlinson ◽  
Michael D. Sacco ◽  
Judy J. Chen ◽  
Anika N. Ali ◽  
...  

ABSTRACT Although many bacterial cell division factors have been uncovered over the years, evidence from recent studies points to the existence of yet-to-be-discovered factors involved in cell division regulation. Thus, it is important to identify factors and conditions that regulate cell division to obtain a better understanding of this fundamental biological process. We recently reported that in the Gram-positive organisms Bacillus subtilis and Staphylococcus aureus, increased production of YpsA resulted in cell division inhibition. In this study, we isolated spontaneous suppressor mutations to uncover critical residues of YpsA and the pathways through which YpsA may exert its function. Using this technique, we were able to isolate four unique intragenic suppressor mutations in ypsA (E55D, P79L, R111P, and G132E) that rendered the mutated YpsA nontoxic upon overproduction. We also isolated an extragenic suppressor mutation in yfhS, a gene that encodes a protein of unknown function. Subsequent analysis confirmed that cells lacking yfhS were unable to undergo filamentation in response to YpsA overproduction. We also serendipitously discovered that YfhS may play a role in cell size regulation. Finally, we provide evidence showing a mechanistic link between YpsA and YfhS. IMPORTANCE Bacillus subtilis is a rod-shaped Gram-positive model organism. The factors fundamental to the maintenance of cell shape and cell division are of major interest. We show that increased expression of ypsA results in cell division inhibition and impairment of colony formation on solid medium. Colonies that do arise possess compensatory suppressor mutations. We have isolated multiple intragenic (within ypsA) mutants and an extragenic suppressor mutant. Further analysis of the extragenic suppressor mutation led to a protein of unknown function, YfhS, which appears to play a role in regulating cell size. In addition to confirming that the cell division phenotype associated with YpsA is disrupted in a yfhS-null strain, we also discovered that the cell size phenotype of the yfhS knockout mutant is abolished in a strain that also lacks ypsA. This highlights a potential mechanistic link between these two proteins; however, the underlying molecular mechanism remains to be elucidated.


2004 ◽  
Vol 55 (2) ◽  
pp. 349-367 ◽  
Author(s):  
Gonçalo Real ◽  
Sabine Autret ◽  
Elizabeth J. Harry ◽  
Jeffery Errington ◽  
Adriano O. Henriques

2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2021 ◽  
Author(s):  
Ville Rissanen ◽  
Sindhujaa Vajravel ◽  
Sergey Kosourov ◽  
Suvi Arola ◽  
Eero Kontturi ◽  
...  

Cell immobilization is a promising approach to create efficient photosynthetic cell factories for sustainable chemicals production. Here, we demonstrate a novel photosynthetic solid-state cell factory design for sustainable biocatalytic ethylene...


2002 ◽  
Vol 184 (9) ◽  
pp. 2344-2351 ◽  
Author(s):  
Mitsuo Ogura ◽  
Hirotake Yamaguchi ◽  
Kazuo Kobayashi ◽  
Naotake Ogasawara ◽  
Yasutaro Fujita ◽  
...  

ABSTRACT The Bacillus subtilis competence transcription factor ComK is required for establishment of competence for genetic transformation. In an attempt to study the ComK factor further, we explored the genes regulated by ComK using the DNA microarray technique. In addition to the genes known to be dependent on ComK for expression, we found many genes or operons whose ComK dependence was not known previously. Among these genes, we confirmed the ComK dependence of 16 genes by using lacZ fusions, and three genes were partially dependent on ComK. Transformation efficiency was significantly reduced in an smf disruption mutant, although disruption of the other ComK-dependent genes did not result in significant decreases in transformation efficiency. Nucleotide sequences similar to that of the ComK box were found for most of the newly discovered genes regulated by ComK.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanchen Yu ◽  
Jinsheng Zhou ◽  
Frederico J. Gueiros-Filho ◽  
Daniel B. Kearns ◽  
Stephen C. Jacobson

ABSTRACT Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system. IMPORTANCE In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Using time-lapse fluorescence microscopy of cells growing in microchannels, we show that Noc neither protects the chromosome from proximal Z-ring formation nor determines the future site of cell division. Rather, Noc plays a corralling role by preventing protofilaments from leaving a Z-ring undergoing cytokinesis and traveling over the nucleoid.


1972 ◽  
Vol 112 (2) ◽  
pp. 994-1003 ◽  
Author(s):  
Neil H. Mendelson ◽  
Roger M. Cole

Sign in / Sign up

Export Citation Format

Share Document