scholarly journals Knockout of Extracytoplasmic Function Sigma Factor ECF-10 Affects Stress Resistance and Biofilm Formation in Pseudomonas putida KT2440

2014 ◽  
Vol 80 (16) ◽  
pp. 4911-4919 ◽  
Author(s):  
Beatrix Tettmann ◽  
Andreas Dötsch ◽  
Olivier Armant ◽  
Christopher D. Fjell ◽  
Joerg Overhage

ABSTRACTPseudomonas putidais a Gram-negative soil bacterium which is well-known for its versatile lifestyle, controlled by a large repertoire of transcriptional regulators. Besides one- and two-component regulatory systems, the genome ofP. putidareveals 19 extracytoplasmic function (ECF) sigma factors involved in the adaptation to changing environmental conditions. In this study, we demonstrate that knockout of extracytoplasmic function sigma factor ECF-10, encoded by open reading frame PP4553, resulted in 2- to 4-fold increased antibiotic resistance to quinolone, β-lactam, sulfonamide, and chloramphenicol antibiotics. In addition, the ECF-10 mutant exhibited enhanced formation of biofilms after 24 h of incubation. Transcriptome analysis using Illumina sequencing technology resulted in the detection of 12 genes differentially expressed (>2-fold) in the ECF-10 knockout mutant strain compared to their levels of expression in wild-type cells. Among the upregulated genes werettgA,ttgB, andttgC, which code for the major multidrug efflux pump TtgABC inP. putidaKT2440. Investigation of an ECF-10 andttgAdouble-knockout strain and attgABC-overexpressing strain demonstrated the involvement of efflux pump TtgABC in the stress resistance and biofilm formation phenotypes of the ECF-10 mutant strain, indicating a new role for this efflux pump beyond simple antibiotic resistance inP. putidaKT2440.

2017 ◽  
Vol 83 (24) ◽  
Author(s):  
Xuemei Yao ◽  
Fei Tao ◽  
Kunzhi Zhang ◽  
Hongzhi Tang ◽  
Ping Xu

ABSTRACTMicrobial bioremediation is a promising approach for the removal of polycyclic aromatic hydrocarbon (PAH) contaminants. Many degraders of PAHs possess efflux pump genes in their genomes; however, their specific roles in the degradation of PAHs have not been clearly elucidated. In this study, two efflux pumps, TtgABC and SrpABC, were systematically investigated to determine their functions in a PAH-degradingPseudomonas putidastrain B6-2 (DSM 28064). The disruption of genesttgABCorsrpABCresulted in a defect in organic solvent tolerance. TtgABC was found to contribute to antibiotic resistance; SrpABC only contributed to antibiotic resistance under an artificial overproduced condition. Moreover, a mutant strain withoutsrpABCdid not maintain its activity in long-term biphenyl (BP) degradation, which correlated with the loss of cell viability. The expression of SrpABC was significantly upregulated in the course of BP degradation. BP, 2-hydroxybiphenyl, 3-hydroxybiphenyl, and 2,3-dihydroxybiphenyl (2,3-DHBP) were revealed to be the inducers ofsrpABC. 2,3-DHBP was verified to be a substrate of pump SrpABC; SrpABC can enhance the tolerance to 2,3-DHBP by pumping it out. The mutant strain B6-2ΔsrpSprolonged BP degradation with the increase ofsrpABCexpression. These results suggest that the pump SrpABC of strain B6-2 plays a positive role in BP biodegradation by pumping out metabolized toxic substances such as 2,3-DHBP. This study provides insights into the versatile physiological functions of the widely distributed efflux pumps in the biodegradation of PAHs.IMPORTANCEPolycyclic aromatic hydrocarbons (PAHs) are notorious for their recalcitrance to degradation in the environment. A high frequency of the occurrence of the efflux pump genes was observed in the genomes of effective PAH degraders; however, their specific roles in the degradation of PAHs are still obscure. The significance of our study is in the identification of the function and mechanism of the efflux pump SrpABC ofPseudomonas putidastrain B6-2 (DSM 28064) in the biphenyl degradation process. SrpABC is crucial for releasing the toxicity caused by intermediates that are unavoidably produced in PAH degradation, which enables an understanding of how cells maintain the intracellular balance of materials. The findings from this study provide a new perspective on PAH recalcitrance and shed light on enhancing PAH degradation by genetic engineering.


2011 ◽  
Vol 56 (2) ◽  
pp. 1001-1009 ◽  
Author(s):  
Matilde Fernández ◽  
Susana Conde ◽  
Jesús de la Torre ◽  
Carlos Molina-Santiago ◽  
Juan-Luis Ramos ◽  
...  

ABSTRACTPseudomonas putidaKT2440 is a chloramphenicol-resistant bacterium that is able to grow in the presence of this antibiotic at a concentration of up to 25 μg/ml. Transcriptomic analyses revealed that the expression profile of 102 genes changed in response to this concentration of chloramphenicol in the culture medium. The genes that showed altered expression include those involved in general metabolism, cellular stress response, gene regulation, efflux pump transporters, and protein biosynthesis. Analysis of a genome-wide collection of mutants showed that survival of a knockout mutant in the TtgABC resistance-nodulation-division (RND) efflux pump and mutants in the biosynthesis of pyrroloquinoline (PQQ) were compromised in the presence of chloramphenicol. The analysis also revealed that an ABC extrusion system (PP2669/PP2668/PP2667) and the AgmR regulator (PP2665) were needed for full resistance toward chloramphenicol. Transcriptional arrays revealed that AgmR controls the expression of thepqqgenes and the operon encoding the ABC extrusion pump from the promoter upstream of open reading frame (ORF) PP2669.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


2015 ◽  
Vol 59 (8) ◽  
pp. 4817-4825 ◽  
Author(s):  
Xinlong He ◽  
Feng Lu ◽  
Fenglai Yuan ◽  
Donglin Jiang ◽  
Peng Zhao ◽  
...  

ABSTRACTChronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency ofAcinetobacter baumanniiand the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolatedA. baumanniistrains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designatedA. baumanniiABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI,adeB,adeG,adeJ,carO, andompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation ofadeGcorrelated with biofilm induction. The consistent upregulation ofadeGandabaIwas detected in A-III-typeA. baumanniiin response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused byA. baumannii. This study provides useful information for the development of antibiofilm strategies.


2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Nanbiao Long ◽  
Liping Zeng ◽  
Shanlei Qiao ◽  
Lei Li ◽  
Guowei Zhong

ABSTRACTAntifungal treatment is often ineffectual, partly because of biofilm formation. In this study, by using a combined forward and reverse genetic strategy, we identified that nucleus-localized AfSsn3 and its partner AfSsn8, which constitute a Cdk8-cyclin pair, are required for azole resistance inAspergillus fumigatus. Deletion ofAfssn3led to increased absorption and utilization of glucose and amino acids. Interestingly, absorption and utilization of glucose accelerated the extracellular polysaccharide formation, while utilization of the amino acids serine, threonine, and glycine increased sphingolipid pathway intermediate accumulation. In addition, the absence ofAfssn3induced the activity of the efflux pump proteins. These factors indicate the mature biofilm is responsible for the major mechanisms ofA. fumigatusresistance to azoles in the ΔAfssn3mutant. Collectively, the loss ofAfssn3led to two “barrier” layers between the intracellular and extracellular spaces, which consequently decreased drug penetration into the cell.


2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Pengyuan Xiu ◽  
Rui Liu ◽  
Dechao Zhang ◽  
Chaomin Sun

ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.


2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Karen L. Visick ◽  
Kelsey M. Hodge-Hanson ◽  
Alice H. Tischler ◽  
Allison K. Bennett ◽  
Vincent Mastrodomenico

ABSTRACT Vibrio fischeri is used as a model for a number of processes, including symbiosis, quorum sensing, bioluminescence, and biofilm formation. Many of these studies depend on generating deletion mutants and complementing them. Engineering such strains, however, is a time-consuming, multistep process that relies on cloning and subcloning. Here, we describe a set of tools that can be used to rapidly engineer deletions and insertions in the V. fischeri chromosome without cloning. We developed a uniform approach for generating deletions using PCR splicing by overlap extension (SOEing) with antibiotic cassettes flanked by standardized linker sequences. PCR SOEing of the cassettes to sequences up- and downstream of the target gene generates a DNA product that can be directly introduced by natural transformation. Selection for the introduced antibiotic resistance marker yields the deletion of interest in a single step. Because these cassettes also contain FRT (FLP recognition target) sequences flanking the resistance marker, Flp recombinase can be used to generate an unmarked, in-frame deletion. We developed a similar methodology and tools for the rapid insertion of specific genes at a benign site in the chromosome for purposes such as complementation. Finally, we generated derivatives of these tools to facilitate different applications, such as inducible gene expression and assessing protein production. We demonstrated the utility of these tools by deleting and inserting genes known or predicted to be involved in motility. While developed for V. fischeri strain ES114, we anticipate that these tools can be adapted for use in other V. fischeri strains and, potentially, other microbes. IMPORTANCE Vibrio fischeri is a model organism for studying a variety of important processes, including symbiosis, biofilm formation, and quorum sensing. To facilitate investigation of these biological mechanisms, we developed approaches for rapidly generating deletions and insertions and demonstrated their utility using two genes of interest. The ease, consistency, and speed of the engineering is facilitated by a set of antibiotic resistance cassettes with common linker sequences that can be amplified by PCR with universal primers and fused to adjacent sequences using splicing by overlap extension and then introduced directly into V. fischeri , eliminating the need for cloning and plasmid conjugation. The antibiotic cassettes are flanked by FRT sequences, permitting their removal using Flp recombinase. We augmented these basic tools with a family of constructs for different applications. We anticipate that these tools will greatly accelerate mechanistic studies of biological processes in V. fischeri and potentially other Vibrio species.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Shannon R. Coleman ◽  
Travis Blimkie ◽  
Reza Falsafi ◽  
Robert E. W. Hancock

ABSTRACT Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa. Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.


2020 ◽  
Vol 8 (11) ◽  
pp. 1782
Author(s):  
Tania Henriquez ◽  
Tom Baldow ◽  
Yat Kei Lo ◽  
Dina Weydert ◽  
Andreas Brachmann ◽  
...  

Bacteria must be able to cope with harsh environments to survive. In Gram-negative bacteria like Pseudomonas species, resistance-nodulation-division (RND) transporters contribute to this task by pumping toxic compounds out of cells. Previously, we found that the RND system TtgABC of Pseudomonas putida KT2440 confers resistance to toxic metal chelators of the bipyridyl group. Here, we report that the incubation of a ttgB mutant in medium containing 2,2’-bipyridyl generated revertant strains able to grow in the presence of this compound. This trait was related to alterations in the pp_2827 locus (homolog of mexS in Pseudomonas aeruginosa). The deletion and complementation of pp_2827 confirmed the importance of the locus for the revertant phenotype. Furthermore, alteration in the pp_2827 locus stimulated expression of the mexEF-oprN operon encoding an RND efflux pump. Deletion and complementation of mexF confirmed that the latter system can compensate the growth defect of the ttgB mutant in the presence of 2,2’-bipyridyl. To our knowledge, this is the first report on a role of pp_2827 (mexS) in the regulation of mexEF-oprN in P. putida KT2440. The results expand the information about the significance of MexEF-OprN in the stress response of P. putida KT2440 and the mechanisms for coping with bipyridyl toxicity.


2017 ◽  
Vol 8 ◽  
Author(s):  
Chenglong Sun ◽  
Yunxue Guo ◽  
Kaihao Tang ◽  
Zhongling Wen ◽  
Baiyuan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document