scholarly journals Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus

2017 ◽  
Vol 83 (12) ◽  
Author(s):  
Pengyuan Xiu ◽  
Rui Liu ◽  
Dechao Zhang ◽  
Chaomin Sun

ABSTRACT Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.

2016 ◽  
Vol 198 (7) ◽  
pp. 1087-1100 ◽  
Author(s):  
Gursonika Binepal ◽  
Kamal Gill ◽  
Paula Crowley ◽  
Martha Cordova ◽  
L. Jeannine Brady ◽  
...  

ABSTRACTPotassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+and a variety of K+transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+acquisition inStreptococcus mutansand the importance of K+homeostasis for its virulence attributes. TheS. mutansgenome harbors four putative K+transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+cotransporter (GlnQHMP), and a channel-like K+transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation inS. mutans. The functionality of the Trk2 system was confirmed by complementing anEscherichia coliTK2420 mutant strain, which resulted in significant K+accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response ofS. mutansto environment stresses.IMPORTANCEBiofilm formation and stress tolerance are important virulence properties of caries-causingStreptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment ofS. mutans. K+is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+transporters inS. mutans. We identified the most important system for K+homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+for the activity of biofilm-forming enzymes, which explains why such high levels of K+would favor biofilm formation.


2013 ◽  
Vol 58 (2) ◽  
pp. 828-832 ◽  
Author(s):  
Spyros Pournaras ◽  
Aggeliki Poulou ◽  
Konstantina Dafopoulou ◽  
Yassine Nait Chabane ◽  
Ioulia Kristo ◽  
...  

ABSTRACTTwo colistin-susceptible/colistin-resistant (Cols/Colr) pairs ofAcinetobacter baumanniistrains assigned to international clone 2, which is prevalent worldwide, were sequentially recovered from two patients after prolonged colistin administration. Compared with the respective Colsisolates (Ab248 and Ab299, both having a colistin MIC of 0.5 μg/ml), both Colrisolates (Ab249 and Ab347, with colistin MICs of 128 and 32 μg/ml, respectively) significantly overexpressedpmrCABgenes, had single-amino-acid shifts in the PmrB protein, and exhibited significantly slower growth. The Colrisolate Ab347, tested by proteomic analysis in comparison with its Colscounterpart Ab299, underexpressed the proteins CsuA/B and C from thecsuoperon (which is necessary for biofilm formation). This isolate also underexpressed aconitase B and different enzymes involved in the oxidative stress response (KatE catalase, superoxide dismutase, and alkyl hydroperoxide reductase), suggesting a reduced response to reactive oxygen species (ROS) and, consequently, impaired colistin-mediated cell death through hydroxyl radical production. Colsisolates that were indistinguishable by macrorestriction analysis from Ab299 caused six sequential bloodstream infections, and isolates indistinguishable from Ab248 caused severe soft tissue infection, while Colrisolates indistinguishable from Ab347 and Ab249 were mainly colonizers. In particular, a Colsisolate identical to Ab299 was still invading the bloodstream 90 days after the colonization of this patient by Colrisolates. These observations indicate considerably lower invasiveness ofA. baumanniiclinical isolates following the development of colistin resistance.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Karen L. Visick ◽  
Kelsey M. Hodge-Hanson ◽  
Alice H. Tischler ◽  
Allison K. Bennett ◽  
Vincent Mastrodomenico

ABSTRACT Vibrio fischeri is used as a model for a number of processes, including symbiosis, quorum sensing, bioluminescence, and biofilm formation. Many of these studies depend on generating deletion mutants and complementing them. Engineering such strains, however, is a time-consuming, multistep process that relies on cloning and subcloning. Here, we describe a set of tools that can be used to rapidly engineer deletions and insertions in the V. fischeri chromosome without cloning. We developed a uniform approach for generating deletions using PCR splicing by overlap extension (SOEing) with antibiotic cassettes flanked by standardized linker sequences. PCR SOEing of the cassettes to sequences up- and downstream of the target gene generates a DNA product that can be directly introduced by natural transformation. Selection for the introduced antibiotic resistance marker yields the deletion of interest in a single step. Because these cassettes also contain FRT (FLP recognition target) sequences flanking the resistance marker, Flp recombinase can be used to generate an unmarked, in-frame deletion. We developed a similar methodology and tools for the rapid insertion of specific genes at a benign site in the chromosome for purposes such as complementation. Finally, we generated derivatives of these tools to facilitate different applications, such as inducible gene expression and assessing protein production. We demonstrated the utility of these tools by deleting and inserting genes known or predicted to be involved in motility. While developed for V. fischeri strain ES114, we anticipate that these tools can be adapted for use in other V. fischeri strains and, potentially, other microbes. IMPORTANCE Vibrio fischeri is a model organism for studying a variety of important processes, including symbiosis, biofilm formation, and quorum sensing. To facilitate investigation of these biological mechanisms, we developed approaches for rapidly generating deletions and insertions and demonstrated their utility using two genes of interest. The ease, consistency, and speed of the engineering is facilitated by a set of antibiotic resistance cassettes with common linker sequences that can be amplified by PCR with universal primers and fused to adjacent sequences using splicing by overlap extension and then introduced directly into V. fischeri , eliminating the need for cloning and plasmid conjugation. The antibiotic cassettes are flanked by FRT sequences, permitting their removal using Flp recombinase. We augmented these basic tools with a family of constructs for different applications. We anticipate that these tools will greatly accelerate mechanistic studies of biological processes in V. fischeri and potentially other Vibrio species.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Jung Gi Min ◽  
Uriel J. Sanchez Rangel ◽  
Austin Franklin ◽  
Hiroki Oda ◽  
Zhen Wang ◽  
...  

ABSTRACT Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa. Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Jennifer K. Teschler ◽  
Andrew T. Cheng ◽  
Fitnat H. Yildiz

ABSTRACT Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae. vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Kritika Gupta ◽  
Arti Tripathi ◽  
Alishan Sahu ◽  
Raghavan Varadarajan

ABSTRACT One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccd O157) and the ccd operon from the F plasmid (ccd F), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.


2013 ◽  
Vol 79 (6) ◽  
pp. 2069-2080 ◽  
Author(s):  
Karen L. Visick ◽  
Kevin P. Quirke ◽  
Sheila M. McEwen

ABSTRACTBiofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacteriumVibrio fischerican be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% arabinose, but not other sugars, induced the production of a pellicle at the air/liquid interfaces of static cultures.V. fischerifailed to grow on arabinose as the sole carbon source, suggesting that pellicle production did not occur as a result of increased growth, but experiments using the acid/base indicator phenol red suggested thatV. fischerimay partially metabolize arabinose. Pellicle production was independent of thesyppolysaccharide locus but was altered upon disruption of thebcscellulose locus. Through a screen for mutants defective for pellicle production, we found that loss of motility disrupted the formation of the arabinose-induced pellicle. Among the ∼20 mutants that retained motility were strains with insertions in a putativemshpilus locus and a strain with a defect inyidK, which is involved in galactose catabolism. Mutants with themshgene disrupted grew poorly in the presence of arabinose, while theyidKmutant appeared to be “blind” to the presence of arabinose. Finally, arabinose impaired symbiotic colonization byV. fischeri. This work thus identifies a novel signal and new pathways involved in control of biofilm formation byV. fischeri.


Author(s):  
Hyeon-Ji Hwang ◽  
Xi-Hui Li ◽  
Soo-Kyoung Kim ◽  
Joon-Hee Lee

Pseudomonas aeruginosa is a notorious pathogen with high antibiotic resistance, strong virulence, and ability to cause biofilm-mediated chronic infection. We found that these characteristics change profoundly before and after the time when anthranilate is produced as an “anthranilate peak”.


2020 ◽  
Vol 203 (3) ◽  
Author(s):  
Alba Chavez-Dozal ◽  
William Soto ◽  
Michele K. Nishiguchi

ABSTRACT Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype. IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri. The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri. This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.


Sign in / Sign up

Export Citation Format

Share Document