scholarly journals Heterologous Expression ofPseudomonas putidaMethyl-Accepting Chemotaxis Proteins YieldsEscherichia coliCells Chemotactic to Aromatic Compounds

2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Clémence Roggo ◽  
Estelle Emilie Clerc ◽  
Noushin Hadadi ◽  
Nicolas Carraro ◽  
Roman Stocker ◽  
...  

ABSTRACTEscherichia coli, commonly used in chemotaxis studies, is attracted mostly by amino acids, sugars, and peptides. We envisioned modifying the chemotaxis specificity ofE. coliby expressing heterologous chemoreceptors fromPseudomonas putidaenabling attraction either to toluene or benzoate. ThemcpTgene encoding the type 40-helical bundle (40H) methyl-accepting chemoreceptor for toluene fromPseudomonas putidaMT53 and thepcaYgene for the type 40H receptor for benzoate and related molecules fromP. putidaF1 were expressed from thetrgpromoter on a plasmid in motile wild-typeE. coliMG1655.E. colicells expressing McpT accumulated in chemoattraction assays to sources with 60 to 200 μM toluene, although less strongly than the response to 100 μM serine, but statistically significantly stronger than that to sources without any added attractant. An McpT-mCherry fusion protein was detectably expressed inE. coliand yielded weak but distinguishable membranes and polar foci in 1% of cells.E. colicells expressing PcaY showed weak attraction to 0.1 to 1 mM benzoate, but 50 to 70% of cells localized the PcaY-mCherry fusion to their membrane. We conclude that implementing heterologous receptors in theE. colichemotaxis network is possible and, upon improvement of the compatibility of the type 40H chemoreceptors, may bear interest for biosensing.IMPORTANCEBacterial chemotaxis might be harnessed for the development of rapid biosensors, in which chemical availability is deduced from cell accumulation to chemoattractants over time. Chemotaxis ofEscherichia colihas been well studied, but the bacterium is not attracted to chemicals of environmental concern, such as aromatic solvents. We show here that heterologous chemoreceptors for aromatic compounds fromPseudomonas putidaat least partly functionally complement theE. colichemotaxis network, yielding cells attracted to toluene or benzoate. Complementation was still inferior to native chemoattractants, like serine, but our study demonstrates the potential for obtaining selective sensing for aromatic compounds inE. coli.

2018 ◽  
Author(s):  
Clémence Roggo ◽  
Estelle Emilie Clerc ◽  
Noushin Hadadi ◽  
Nicolas Carraro ◽  
Roman Stocker ◽  
...  

ABSTRACTEscherichia coli, commonly used in chemotaxis studies, is attracted mostly by amino acids, sugars and peptides. We envisioned modifying chemotaxis specificity ofE. coliby expressing heterologous chemoreceptors fromPseudomonas putidaenabling attraction either to toluene or benzoate. ThemcpTgene encoding the type 40H methyl-accepting chemoreceptor for toluene fromPseudomonas putidaMT53 and thepcaYgene for the type 40H receptor for benzoate and related molecules fromP. putidaF1 were expressed from thetrgpromoter on a plasmid in motile wild-typeE. coliMG1655.E. colicells expressing McpT accumulated in chemoattraction assays to sources with 60–200 μM toluene; less strongly than the response to 100 μM serine, but statistically significantly stronger than to sources without any added attractant. An McpT-mCherry fusion protein was detectably expressed inE. coliand yielding weak but distinguishable membrane and polar foci in 1% of cells.E. coliexpressing PcaY showed weak attraction to 0.1–1 mM benzoate but 50–70% of cells localized the PcaY-mCherry fusion to their membrane. We conclude that implementing heterologous receptors in theE. colichemotaxis network is possible and, upon improvement of the compatibility of the type 40H chemoreceptors, may bear interest for biosensing.IMPORTANCEBacterial chemotaxis might be harnessed for the development of rapid biosensors, in which chemical availability is deduced from cell accumulation to chemoattractants over time. Chemotaxis ofEscherichia colihas been well-studied, but the bacterium is not attracted to chemicals of environmental concern, such as aromatic solvents. We show here that heterologous chemoreceptors for aromatic compounds fromPseudomonas putidaat least partly functionally complement theE. colichemotaxis network, yielding cells attracted to toluene or benzoate. Complementation was still inferior to native chemoattractants like serine, but our study demonstrates the potential for obtaining selective sensing for aromatic compounds inE. coli.


2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


2020 ◽  
Vol 86 (14) ◽  
Author(s):  
Daisuke Koma ◽  
Takahiro Kishida ◽  
Eisuke Yoshida ◽  
Hiroyuki Ohashi ◽  
Hayato Yamanaka ◽  
...  

ABSTRACT Many phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk. Therefore, we engineered here the Escherichia coli chromosome to create superior phenylalanine- and tyrosine-overproducing strains that did not depend on plasmid-based expression. Integration into the E. coli chromosome of two central metabolic pathway genes (ppsA and tktA) and eight shikimate pathway genes (aroA, aroB, aroC, aroD, aroE, aroGfbr, aroL, and pheAfbr), controlled by the T7lac promoter, resulted in excellent titers and yields of phenylalanine; the superscript “fbr” indicates that the enzyme encoded by the gene was feedback resistant. The generated strain could be changed to be a superior tyrosine-producing strain by replacing pheAfbr with tyrAfbr. A rational approach revealed that integration of seven genes (ppsA, tktA, aroA, aroB, aroC, aroGfbr, and pheAfbr) was necessary as the minimum gene set for high-yield phenylalanine production in E. coli MG1655 (tyrR, adhE, ldhA, pykF, pflDC, and ascF deletant). The phenylalanine- and tyrosine-producing strains were further applied to generate phenyllactic acid-, 4-hydroxyphenyllactic acid-, tyramine-, and tyrosol-producing strains; yield of these aromatic compounds increased proportionally to the increase in phenylalanine and tyrosine yields. IMPORTANCE Plasmid-free strains for aromatic compound production are desired in the aspect of industrial application. However, the yields of phenylalanine and tyrosine have been considerably lower in plasmid-free strains than in plasmid-based strains. The significance of this research is that we succeeded in generating superior plasmid-free phenylalanine- and tyrosine-producing strains by engineering the E. coli chromosome, which was comparable to that in plasmid-based strains. The generated strains have a potential to generate superior strains for the production of aromatic compounds. Actually, we demonstrated that four kinds of aromatic compounds could be produced from glucose with high yields (e.g., 0.28 g tyrosol/g glucose).


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Timofey D. Arapov ◽  
Rafael Castañeda Saldaña ◽  
Amanda L. Sebastian ◽  
W. Keith Ray ◽  
Richard F. Helm ◽  
...  

ABSTRACT Chemotaxis systems enable microbes to sense their immediate environment, moving toward beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti, a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis. To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to various degrees. The 10-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that consist of only CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti, instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti, which utilizes a phosphate sink mechanism based on CheA retrophosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis. Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased compared to CheA, indicative of variations in the adaptation system of S. meliloti. Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in Escherichia coli and Bacillus subtilis. In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.


2011 ◽  
Vol 77 (20) ◽  
pp. 7104-7112 ◽  
Author(s):  
Maria Karczmarczyk ◽  
Yvonne Abbott ◽  
Ciara Walsh ◽  
Nola Leonard ◽  
Séamus Fanning

ABSTRACTIn this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection ofEscherichia coliisolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1,dfrA1-aadA1,dfrA17-aadA5,dfrA12-orfF-aadA2,blaOXA-30-aadA1,aacC1-orf1-orf2-aadA1,dfr7). Class 2 integrons (13.5%) contained thedfrA1-sat1-aadA1gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected includedblaTEM,cat,floR,aadB,aphA1,strA-strB,sul2, andtet(B), respectively. TheblaCTX-M-2gene, encoding an extended-spectrum β-lactamase (ESβL), andblaCMY-2, encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensalE. coliisolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, theblaCTX-M-2gene has not previously been reported in Ireland.


2014 ◽  
Vol 197 (5) ◽  
pp. 905-912 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Nikolai S. Prokhorov ◽  
Alexander S. Shashkov ◽  
Olga G. Ovchinnikova ◽  
Evelina L. Zdorovenko ◽  
...  

The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmentalEscherichia coliisolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen ofE. coliO22, differing only in side-chain α-d-glucosylation in the former, mediated by agtrlocus on the chromosome. Spontaneous mutations ofE. coli4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions ofE. coli4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.


2017 ◽  
Vol 200 (6) ◽  
Author(s):  
Hardik M. Zatakia ◽  
Timofey D. Arapov ◽  
Veronika M. Meier ◽  
Birgit E. Scharf

ABSTRACTThe chemosensory system inSinorhizobium melilotihas several important deviations from the widely studied enterobacterial paradigm. To better understand the differences between the two systems and how they are optimally tuned, we determined the cellular stoichiometry of the methyl-accepting chemotaxis proteins (MCPs) and the histidine kinase CheA inS. meliloti. Quantitative immunoblotting was used to determine the total amount of MCPs and CheA per cell inS. meliloti. The MCPs are present in the cell in high abundance (McpV), low abundance (IcpA, McpU, McpX, and McpW), and very low abundance (McpY and McpZ), whereas McpT was below the detection limit. The approximate cellular ratio of these three receptor groups is 300:30:1. The chemoreceptor-to-CheA ratio is 23.5:1, highly similar to that seen inBacillus subtilis(23:1) and about 10 times higher than that inEscherichia coli(3.4:1). Different fromE. coli, the high-abundance receptors inS. melilotiare lacking the carboxy-terminal NWETF pentapeptide that binds the CheR methyltransferase and CheB methylesterase. Using transcriptionallacZfusions, we showed that chemoreceptors are positively controlled by the master regulators of motility, VisNR and Rem. In addition, FlbT, a class IIA transcriptional regulator of flagellins, also positively regulates the expression of most chemoreceptors except for McpT and McpY, identifying chemoreceptors as class III genes. Taken together, these results demonstrate that the chemosensory complex and the adaptation system inS. melilotideviates significantly from the established enterobacterial paradigm but shares some similarities withB. subtilis.IMPORTANCEThe symbiotic soil bacteriumSinorhizobium melilotiis of great agricultural importance because of its nitrogen-fixing properties, which enhances growth of its plant symbiont, alfalfa. Chemotaxis provides a competitive advantage for bacteria to sense their environment and interact with their eukaryotic hosts. For a better understanding of the role of chemotaxis in these processes, detailed knowledge on the regulation and composition of the chemosensory machinery is essential. Here, we show that chemoreceptor gene expression inS. melilotiis controlled through the main transcriptional regulators of motility. Chemoreceptor abundance is much lower inS. melilotithan inEscherichia coliandBacillus subtilis. Moreover, the chemoreceptor-to-kinase CheA ratio is different from that ofE. colibut similar to that ofB. subtilis.


2013 ◽  
Vol 81 (4) ◽  
pp. 1078-1089 ◽  
Author(s):  
Yogitha N. Srikhanta ◽  
Dianna M. Hocking ◽  
Judyta Praszkier ◽  
Matthew J. Wakefield ◽  
Roy M. Robins-Browne ◽  
...  

ABSTRACTAraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenicEscherichia coli(EPEC), enterotoxigenicE. coli, enteroaggregativeE. coli, andCitrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, ofC. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target,sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression ofsefAby binding to a region upstream of thesefApromoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.


2013 ◽  
Vol 79 (7) ◽  
pp. 2416-2423 ◽  
Author(s):  
Rita A. Luu ◽  
Benjamin J. Schneider ◽  
Christie C. Ho ◽  
Vasyl Nesteryuk ◽  
Stacy E. Ngwesse ◽  
...  

ABSTRACTThe phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strainPseudomonas putidaF1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA degradation gene cluster (paa) inP. putidaF1 and demonstrated that PAA serves as a chemoattractant. The chemotactic response was induced during growth with PAA and was dependent on PAA metabolism. A functionalcheAgene was required for the response, indicating that PAA is sensed through the conserved chemotaxis signal transduction system. AP. putidaF1 mutant lacking the energy taxis receptor Aer2 was deficient in PAA taxis, indicating that Aer2 is responsible for mediating the response to PAA. The requirement for metabolism and the role of Aer2 in the response indicate thatP. putidaF1 uses energy taxis to detect PAA. We also revealed that PAA is an attractant forEscherichia coli; however, a mutant lacking a functional Aer energy receptor had a wild-type response to PAA in swim plate assays, suggesting that PAA is detected through a different mechanism inE. coli. The role of Aer2 as an energy taxis receptor provides the potential to sense a broad range of aromatic growth substrates as chemoattractants. Since chemotaxis has been shown to enhance the biodegradation of toxic pollutants, the ability to sense PAA gradients may have implications for the bioremediation of aromatic hydrocarbons that are degraded via the PAA pathway.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Nicolas Kieffer ◽  
Guilhem Royer ◽  
Jean-Winoc Decousser ◽  
Anne-Sophie Bourrel ◽  
Mattia Palmieri ◽  
...  

ABSTRACT The plasmid-located mcr-9 gene, encoding a putative phosphoethanolamine transferase, was identified in a colistin-resistant human fecal Escherichia coli strain belonging to a very rare phylogroup, the D-ST69-O15:H6 clone. This MCR-9 protein shares 33% to 65% identity with the other plasmid-encoded MCR-type enzymes identified (MCR-1 to -8) that have been found as sources of acquired resistance to polymyxins in Enterobacteriaceae. Analysis of the lipopolysaccharide of the MCR-9-producing isolate revealed a function similar to that of MCR-1 by adding a phosphoethanolamine group to lipid A and subsequently modifying the structure of the lipopolysaccharide. However, a minor impact on susceptibility to polymyxins was noticed once the mcr-9 gene was cloned and produced in an E. coli K-12-derived strain. Nevertheless, we showed here that subinhibitory concentrations of colistin induced the expression of the mcr-9 gene, leading to increased MIC levels. This inducible expression was mediated by a two-component regulatory system encoded by the qseC and qseB genes located downstream of mcr-9. Genetic analysis showed that the mcr-9 gene was carried by an IncHI2 plasmid. In silico analysis revealed that the plasmid-encoded MCR-9 shared significant amino acid identity (ca. 80%) with the chromosomally encoded MCR-like proteins from Buttiauxella spp. In particular, Buttiauxella gaviniae was found to harbor a gene encoding MCR-BG, sharing 84% identity with MCR-9. That gene was neither expressed nor inducible in its original host, which was fully susceptible to polymyxins. This work showed that mcr genes may circulate silently and remain undetected unless induced by colistin.


Sign in / Sign up

Export Citation Format

Share Document