scholarly journals Characterization of Multidrug-Resistant Escherichia coli Isolates from Animals Presenting at a University Veterinary Hospital

2011 ◽  
Vol 77 (20) ◽  
pp. 7104-7112 ◽  
Author(s):  
Maria Karczmarczyk ◽  
Yvonne Abbott ◽  
Ciara Walsh ◽  
Nola Leonard ◽  
Séamus Fanning

ABSTRACTIn this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection ofEscherichia coliisolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1,dfrA1-aadA1,dfrA17-aadA5,dfrA12-orfF-aadA2,blaOXA-30-aadA1,aacC1-orf1-orf2-aadA1,dfr7). Class 2 integrons (13.5%) contained thedfrA1-sat1-aadA1gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected includedblaTEM,cat,floR,aadB,aphA1,strA-strB,sul2, andtet(B), respectively. TheblaCTX-M-2gene, encoding an extended-spectrum β-lactamase (ESβL), andblaCMY-2, encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensalE. coliisolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, theblaCTX-M-2gene has not previously been reported in Ireland.

2012 ◽  
Vol 78 (15) ◽  
pp. 5444-5447 ◽  
Author(s):  
Elizabeth Ponce-Rivas ◽  
María-Enriqueta Muñoz-Márquez ◽  
Ashraf A. Khan

ABSTRACTThis study describes the prevalence of arrays of class 1 integron cassettes and Qnr determinants (A, B, and S) in 19 fluoroquinolone-resistantEscherichia coliisolates from chicken litter.qnrSandqnrAwere the predominant genes in these fluoroquinolone-resistant isolates, and an uncommon array ofaacA4-catB3-dfrA1gene cassettes from a class1 integron was found. Additionally,aadA1anddfrA1gene cassettes, encoding resistance to streptomycin and trimethoprim, constituted the most common genes identified and was located on megaplasmids as well on the chromosome. Antibiotic resistance, pulsed-field gel electrophoresis (PFGE), and plasmid data suggest a genetically diverse origin of poultryE. coliisolates.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Xiaobo Liu ◽  
Ruichao Li ◽  
Zhiwei Zheng ◽  
Kaichao Chen ◽  
Miaomiao Xie ◽  
...  

ABSTRACT This study surveyed the prevalence of mcr-1 in extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains of food origin in China and identified strains that carried mcr-1, fosA3, and ESBL genes, which were carried in various plasmids. The mcr-1 and ESBL genes could be cotransferred by one or more types of plasmids. The presence of these multidrug-resistant E. coli strains in food products might pose a huge threat to public health.


2001 ◽  
Vol 67 (4) ◽  
pp. 1558-1564 ◽  
Author(s):  
Shaohua Zhao ◽  
David G. White ◽  
Beilei Ge ◽  
Sherry Ayers ◽  
Sharon Friedman ◽  
...  

ABSTRACT A total of 50 isolates of Shiga toxin-producing Escherichia coli (STEC), including 29 O157:H7 and 21 non-O157 STEC strains, were analyzed for antimicrobial susceptibilities and the presence of class 1 integrons. Seventy-eight (n = 39) percent of the isolates exhibited resistance to two or more antimicrobial classes. Multiple resistance to streptomycin, sulfamethoxazole, and tetracycline was most often observed. Class 1 integrons were identified among nine STEC isolates, including serotypes O157:H7, O111:H11, O111:H8, O111:NM, O103:H2, O45:H2, O26:H11, and O5:NM. The majority of the amplified integron fragments were 1 kb in size with the exception of one E. coli O111:H8 isolate which possessed a 2-kb amplicon. DNA sequence analysis revealed that the integrons identified within the O111:H11, O111:NM, O45:H2, and O26:H11 isolates contained the aadA gene encoding resistance to streptomycin and spectinomycin. Integrons identified among the O157:H7 and O103:H2 isolates also possessed a similaraadA gene. However, DNA sequencing revealed only 86 and 88% homology, respectively. The 2-kb integron of the E. coli O111:H8 isolate contained three genes, dfrXII,aadA2, and a gene of unknown function, orfF, which were 86, 100, and 100% homologous, respectively, to previously reported gene cassettes identified in integrons found inCitrobacter freundii and Klebsiella pneumoniae. Furthermore, integrons identified among the O157:H7 and O111:NM strains were transferable via conjugation to another strain of E. coli O157:H7 and to several strains of Hafnia alvei. To our knowledge, this is the first report of integrons and antibiotic resistance gene cassettes in STEC, in particular E. coliO157:H7.


2015 ◽  
Vol 81 (11) ◽  
pp. 3604-3611 ◽  
Author(s):  
Marc Solà-Ginés ◽  
Juan José González-López ◽  
Karla Cameron-Veas ◽  
Nuria Piedra-Carrasco ◽  
Marta Cerdà-Cuéllar ◽  
...  

ABSTRACTFlies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence ofEscherichia colistrains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producingE. coli. Of these isolates, 23 containedblaCTX-M-1, 18 containedblaCTX-M-14, and 1 containedblaCTX-M-9. ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harboredqnrS. Identical PFGE profiles were found forE. coliisolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenicE. coli(APEC) and 29% were considered extraintestinal pathogenicE. coli(ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistantE. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.


2011 ◽  
Vol 77 (20) ◽  
pp. 7121-7127 ◽  
Author(s):  
Maria Karczmarczyk ◽  
Ciara Walsh ◽  
Rosemarie Slowey ◽  
Nola Leonard ◽  
Séamus Fanning

ABSTRACTThis study describes the genotypic characteristics of a collection of 100 multidrug-resistant (MDR)Escherichia colistrains recovered from cattle and the farm environment in Ireland in 2007. The most prevalent antimicrobial resistance identified was to streptomycin (100%), followed by tetracycline (99%), sulfonamides (98%), ampicillin (82%), and neomycin (62%). Resistance was mediated predominantly bystrA-strB(92%),tetA(67%),sul2(90%),blaTEM(79%), andaphA1(63%) gene markers, respectively. Twenty-seven isolates harbored a class 1 integrase (intI1), whileqacEΔ1andsul1markers were identified in 25 and 26 isolates, respectively. The variable regions of these integrons contained aminoglycoside, trimethoprim, and β-lactam resistance determinants (aadA12,aadB-aadA1,blaOXA-30-aadA1,dfrA1-aadA1,dfrA7). Class 2 integrons were identified less frequently (4%) and contained the gene cassette arraydfrA1-sat1-aadA1. Resistance to ampicillin, neomycin, streptomycin, sulfonamide, and tetracycline was associated with transferable high-molecular-weight plasmids, as demonstrated by conjugation assays. A panel of virulence markers was screened for by PCR, and genes identified includedvt1, K5 in 2 isolates,papCin 10 isolates, and PAI IV536in 37 isolates. MDR commensalE. coliisolates from Irish cattle displayed considerable diversity with respect to the genes identified. Our findings highlight the importance of the commensal microflora of food-producing animals as a reservoir of transferable MDR.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2020 ◽  
Vol 17 (3) ◽  
pp. 0710
Author(s):  
Md Fazlul Karim Khan ◽  
Shah Samiur Rashid

A significant increase in the incidence of non-O157 verotoxigenic Escherichia coli (VTEC) infections have become a serious health issues, and this situation is worsening due to the dissemination of plasmid mediated multidrug-resistant microorganisms worldwide. This study aims to investigate the presence of plasmid-mediated verotoxin gene in non-O157 E. coli. Standard microbiological techniques identified a total of 137 E. coli isolates. The plasmid was detected by Perfectprep Plasmid Mini preparation kit. These isolates were subjected to disk diffusion assay, and plasmid curing with ethidium bromide treatment. The plasmid containing isolates were subjected to a polymerase chain reaction (PCR) for investigating the presence of plasmid mediated verotoxin gene (VT1 and VT2) in non-O157 E. coli. Among the 137 E. coli isolates, 49 isolates were non-O157 E. coli while 29 (59.1%) isolates were verotoxin producing non-O157 serotypes and 26 non-O157 VTEC isolates possessed plasmids. Certain isolates harboured single sized plasmid while others had multiple plasmids with different size varied from 1.8kb to 7.6kb. A plasmid containing all (100%) the isolates was multidrug-resistant. Eight isolates changed their susceptibility patterns while three isolates were found to lose plasmid after post plasmid curing treatment and the rest of the isolates (15) remained constant. Different PCR sets characterized 3 plasmid-mediated verotoxins producing non-O157 E. coli. This current study demonstrated the occurrence of plasmid mediated verotoxin gene in non-O157 E. coli. To the best of our knowledge, this is the first report in the global literature on plasmid-mediated verotoxin gene in non-O157 E. coli. Timely diagnosis and surveillance of VTEC infections should prioritize to stop or slow down the virulence gene for dissemination by plasmid-mediated gene transfer amongst the same bacteria or other species.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


2019 ◽  
Vol 18 (1) ◽  
pp. 67-76 ◽  
Author(s):  
David Ortega-Paredes ◽  
Pedro Barba ◽  
Santiago Mena-López ◽  
Nathaly Espinel ◽  
Verónica Crespo ◽  
...  

Abstract Urban river pollution by multidrug-resistant (MDR) bacteria constitutes an important public health concern. Epidemiologically important strains of MDR Escherichia coli transmissible at the human–animal–environment interfaces are especially worrying. Quantifying and characterizing MDR E. coli at a molecular level is thus imperative for understanding its epidemiology in natural environments and its role in the spread of resistance in precise geographical areas. Cefotaxime-resistant E. coli was characterized along the watercourse of the major urban river in Quito. Our results showed high quantities of cefotaxime-resistant E. coli (2.7 × 103–5.4 × 105 CFU/100 mL). The antimicrobial resistance index (ARI) revealed the exposure of the river to antibiotic contamination, and the multiple antibiotic resistance index indicated a high risk of contamination. The blaCTX-M-15 gene was the most prevalent in our samples. Isolates also had class 1 integrons carrying aminoglycoside-modifying enzymes and folate pathway inhibitors. The isolates belonged to phylogroups A, B1 and D. Clonal complex 10 was found to be the most prevalent (ST10, ST44 and ST 167), followed by ST162, ST394 and ST46. Our study provides a warning about the high potential of the major urban river in Quito for spreading the epidemiologically important MDR E. coli.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


Sign in / Sign up

Export Citation Format

Share Document