scholarly journals Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product

2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Xu Yan ◽  
Rui Yang ◽  
Rui-Xue Zhao ◽  
Jian-Ting Han ◽  
Wen-Juan Jia ◽  
...  

ABSTRACT Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the −35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG. Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation. IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.

2012 ◽  
Vol 56 (8) ◽  
pp. 4175-4183 ◽  
Author(s):  
Seung Young Kim ◽  
Kou-San Ju ◽  
William W. Metcalf ◽  
Bradley S. Evans ◽  
Tomohisa Kuzuyama ◽  
...  

ABSTRACTFosfomycin is a wide-spectrum antibiotic that is used clinically to treat acute cystitis in the United States. The compound is produced by several strains of streptomycetes and pseudomonads. We sequenced the biosynthetic gene cluster responsible for fosfomycin production inPseudomonas syringaePB-5123. Surprisingly, the biosynthetic pathway in this organism is very different from that inStreptomyces fradiaeandStreptomyces wedmorensis. The pathways share the first and last steps, involving conversion of phosphoenolpyruvate to phosphonopyruvate (PnPy) and 2-hydroxypropylphosphonate (2-HPP) to fosfomycin, respectively, but the enzymes converting PnPy to 2-HPP are different. The genome ofP. syringaePB-5123 lacks a gene encoding the PnPy decarboxylase found in theStreptomycesstrains. Instead, it contains a gene coding for a citrate synthase-like enzyme, Psf2, homologous to the proteins that add an acetyl group to PnPy in the biosynthesis of FR-900098 and phosphinothricin. Heterologous expression and purification of Psf2 followed by activity assays confirmed the proposed activity of Psf2. Furthermore, heterologous production of fosfomycin inPseudomonas aeruginosafrom a fosmid encoding the fosfomycin biosynthetic cluster fromP. syringaePB-5123 confirmed that the gene cluster is functional. Therefore, two different pathways have evolved to produce this highly potent antimicrobial agent.


Gene ◽  
2001 ◽  
Vol 278 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
Antonella Morea ◽  
Kalai Mathee ◽  
Michael J. Franklin ◽  
Alessio Giacomini ◽  
Michael O'Regan ◽  
...  

2013 ◽  
Vol 79 (17) ◽  
pp. 5224-5232 ◽  
Author(s):  
Tina Strobel ◽  
Yvonne Schmidt ◽  
Anton Linnenbrink ◽  
Andriy Luzhetskyy ◽  
Marta Luzhetska ◽  
...  

ABSTRACTSaccharothrix espanaensisis a member of the orderActinomycetales. The genome of the strain has been sequenced recently, revealing 106 glycosyltransferase genes. In this paper, we report the detection of a glycosyltransferase fromSaccharothrix espanaensiswhich is able to rhamnosylate different phenolic compounds targeting different positions of the molecules. The gene encoding the flexible glycosyltransferase is not located close to a natural product biosynthetic gene cluster. Therefore, the native function of this enzyme might be not the biosynthesis of a secondary metabolite but the glycosylation of internal and external natural products as part of a defense mechanism.


2013 ◽  
Vol 79 (23) ◽  
pp. 7298-7304 ◽  
Author(s):  
Chengwei Liu ◽  
Atsushi Minami ◽  
Motoyoshi Noike ◽  
Hiroaki Toshima ◽  
Hideaki Oikawa ◽  
...  

ABSTRACTWe recently reported the function ofpaxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster inPenicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study,atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster inAspergillus flavusand encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and β-aflatrem (compound 3), both of which are compound 1-related compounds produced byA. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds.


2015 ◽  
Vol 197 (15) ◽  
pp. 2536-2544 ◽  
Author(s):  
Letizia Lo Grasso ◽  
Sonia Maffioli ◽  
Margherita Sosio ◽  
Mervyn Bibb ◽  
Anna Maria Puglia ◽  
...  

ABSTRACTThe actinomyceteNonomuraeasp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by thedbvgene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation ofdbv6had no effect. In addition, overexpression ofdbv3led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons,dbv14-dbv8anddbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4,dbv29,dbv36, anddbv37) and of six operons (dbv2-dbv1,dbv14-dbv8,dbv17-dbv15,dbv21-dbv20,dbv24-dbv28, anddbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription ofdbv4and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation.IMPORTANCEThis report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomyceteNonomuraeasp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.


2012 ◽  
Vol 78 (12) ◽  
pp. 4194-4199 ◽  
Author(s):  
Soo-Young Park ◽  
Soo-Keun Choi ◽  
Jihoon Kim ◽  
Tae-Kwang Oh ◽  
Seung-Hwan Park

ABSTRACTIn our previous study,Bacillus subtilisstrain BSK3S, containing a polymyxin biosynthetic gene cluster fromPaenibacillus polymyxa, could produce polymyxin only in the presence of exogenously addedl-2,4-diaminobutyric acid (Dab). The dependence of polymyxin production on exogenous Dab was removed by introducing anectBgene encoding the diaminobutyrate synthase ofP. polymyxainto BSK3S (resulting in strain BSK4). We found, by observing the complete inhibition of polymyxin synthesis when thespo0Agene was knocked out (strain BSK4-0A), that Spo0A is indispensable for the production of polymyxin. Interestingly, theabrB-spo0Adouble-knockout mutant, BSK4-0A-rB, and the singleabrBmutant, BSK4-rB, showed 1.7- and 2.3-fold increases, respectively, in polymyxin production over that of BSK4. These results coincided with the transcription levels ofpmxAin the strains observed by quantitative real-time PCR (qRT-PCR). The AbrB protein was shown to bind directly to the upstream region ofpmxA, indicating that AbrB directly inhibits the transcription of polymyxin biosynthetic genes. The BSK4-rB strain, producing high levels of polymyxin, will be useful for the development and production of novel polymyxin derivatives.


2015 ◽  
Vol 83 (4) ◽  
pp. 1396-1405 ◽  
Author(s):  
Rie Jønsson ◽  
Carsten Struve ◽  
Nadia Boisen ◽  
Ramona Valentina Mateiu ◽  
Araceli E. Santiago ◽  
...  

EnteroaggregativeEscherichia coli(EAEC) organisms belong to a diarrheagenic pathotype known to cause diarrhea and can be characterized by distinct aggregative adherence (AA) in a stacked-brick pattern to cultured epithelial cells. In this study, we investigated 118 EAEC strains isolated from the stools of Danish adults with traveler's diarrhea. We evaluated the presence of the aggregative adherence fimbriae (AAFs) by a multiplex PCR, targeting the four known major subunit variants as well as their usher-encoding genes. Almost one-half (49/118) of the clinical isolates did not possess any known AAF major fimbrial subunit, despite the presence of other AggR-related loci. Further investigation revealed the presence of an AAF-related gene encoding a yet-uncharacterized adhesin, termedagg5A. The sequence of theagg5DCBAgene cluster shared fimbrial accessory genes (usher, chaperone, and minor pilin subunit genes) with AAF/III, as well as the signal peptide present in the beginning of theagg3Agene. The completeagg5DCBAgene cluster from a clinical isolate, EAEC strain C338-14, with the typical stacked-brick binding pattern was cloned, and deletion of the cluster was performed. Transformation to a nonadherentE. coliHB101 and complementation of the nonadherent C338-14 mutant with the complete gene cluster restored the AA adhesion. Overall, we found theagg5Agene in 12% of the 118 strains isolated from Denmark, suggesting that this novel adhesin represents an important variant.


2017 ◽  
Vol 84 (4) ◽  
Author(s):  
Annarita Viggiano ◽  
Oleksandr Salo ◽  
Hazrat Ali ◽  
Wiktor Szymanski ◽  
Peter P. Lankhorst ◽  
...  

ABSTRACT Chrysogine is a yellow pigment produced by Penicillium chrysogenum and other filamentous fungi. Although the pigment was first isolated in 1973, its biosynthetic pathway has so far not been resolved. Here, we show that deletion of the highly expressed nonribosomal peptide synthetase (NRPS) gene Pc21g12630 ( chyA ) resulted in a decrease in the production of chrysogine and 13 related compounds in the culture broth of P. chrysogenum . Each of the genes of the chyA -containing gene cluster was individually deleted, and corresponding mutants were examined by metabolic profiling in order to elucidate their function. The data suggest that the NRPS ChyA mediates the condensation of anthranilic acid and alanine into the intermediate 2-(2-aminopropanamido)benzoic acid, which was verified by feeding experiments of a ΔchyA strain with the chemically synthesized product. The remainder of the pathway is highly branched, yielding at least 13 chrysogine-related compounds. IMPORTANCE Penicillium chrysogenum is used in industry for the production of β-lactams, but also produces several other secondary metabolites. The yellow pigment chrysogine is one of the most abundant metabolites in the culture broth, next to β-lactams. Here, we have characterized the biosynthetic gene cluster involved in chrysogine production and elucidated a complex and highly branched biosynthetic pathway, assigning each of the chrysogine cluster genes to biosynthetic steps and metabolic intermediates. The work further unlocks the metabolic potential of filamentous fungi and the complexity of secondary metabolite pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqi Wang ◽  
Wei Cao ◽  
Justin Merritt ◽  
Zhoujie Xie ◽  
Hao Liu

FtsH belongs to the AAA+ ATP-dependent family of proteases, which participate in diverse cellular processes and are ubiquitous among bacteria, chloroplasts, and mitochondria. FtsH is poorly characterized in most organisms, especially compared to other major housekeeping proteases. In the current study, we examined the source of FtsH essentiality in the human oral microbiome species Streptococcus mutans, one of the primary etiological agents of dental caries. By creating a conditionally lethal ftsH mutant, we were able to identify a secondary suppressor missense mutation in the vicR gene, encoding the response regulator of the essential VicRK two-component system (TCS). Transcriptomic analysis of the vicR (G195R) mutant revealed significantly reduced expression of 46 genes, many of which were located within the genomic island Tnsmu2, which harbors the mutanobactin biosynthetic gene cluster. In agreement with the transcriptomic data, deletion of the mutanobactin biosynthetic gene cluster suppressed ftsH essentiality in S. mutans. We also explored the role of FtsH in S. mutans physiology and demonstrated its critical role in stress tolerance, especially acid stress. The presented results reveal the first insights within S. mutans for the pleiotropic regulatory function of this poorly understood global regulator.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Ying Yin ◽  
Bo Chen ◽  
Shuangxiu Song ◽  
Bing Li ◽  
Xiuqing Yang ◽  
...  

ABSTRACT Fungal chemodiversity is well known in part due to the production of diverse analogous compounds by a single biosynthetic gene cluster (BGC). Usually, similar or the same metabolites are produced by closely related fungal species under a given condition, the foundation of fungal chemotaxonomy. Here, we report a rare case of the production of the cyclodepsipeptide beauveriolides (BVDs) in three insect-pathogenic fungi. We found that the more closely related fungi Beauveria bassiana and Beauveria brongniartii produced structurally distinct analogs of BVDs, whereas the less-close relatives B. brongniartii and Cordyceps militaris biosynthesized structurally similar congeners under the same growth condition. It was verified that a conserved BGC containing four genes is responsible for BVD biosynthesis in three fungi, including a polyketide synthase (PKS) for the production of 3-hydroxy fatty acids (FAs) with chain length variations. In contrast to BVD production patterns, phylogenetic analysis of the BGC enzymes or enzyme domains largely resulted in the congruence relationship with fungal speciation. Feeding assays demonstrated that an FA with a chain length of eight carbon atoms was preferentially utilized, whereas an FA with a chain longer than 10 carbon atoms could not be used as a substrate for BVD biosynthesis. Insect survival assays suggested that the contribution of BVDs to fungal virulence might be associated with the susceptibility of insect species. The results of this study enrich the knowledge of fungal secondary metabolic diversity that can question the reliability of fungal chemotaxonomy. IMPORTANCE Fungal chemotaxonomy is an approach to classify fungi based on the fungal production profile of metabolites, especially the secondary metabolites. We found an atypical example that could question the reliability of fungal chemical classifications in this study, i.e., the more closely related entomopathogenic species Beauveria bassiana and Beauveria brongniartii produced structurally different congeners of the cyclodepsipeptide beauveriolides, whereas the rather divergent species B. brongniartii and Cordyceps militaris biosynthesized similar analogs under the same growth condition. The conserved biosynthetic gene cluster (BGC) containing four genes present in each species is responsible for beauveriolide production. In contrast to the compound formation profiles, the phylogenies of biosynthetic enzymes or enzymatic domains show associations with fungal speciation. Dependent on the insect species, production of beauveriolides may contribute to fungal virulence against the susceptible insect hosts. The findings in this study augment the diversity of fungal secondary metabolisms.


Sign in / Sign up

Export Citation Format

Share Document