scholarly journals Climate Change and Physical Disturbance Manipulations Result in Distinct Biological Soil Crust Communities

2015 ◽  
Vol 81 (21) ◽  
pp. 7448-7459 ◽  
Author(s):  
Blaire Steven ◽  
Cheryl R. Kuske ◽  
La Verne Gallegos-Graves ◽  
Sasha C. Reed ◽  
Jayne Belnap

ABSTRACTBiological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreasedCyanobacteriaabundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2013 ◽  
Vol 5 (8) ◽  
pp. 3244-3274 ◽  
Author(s):  
Pheerawat Plangoen ◽  
Mukand Babel ◽  
Roberto Clemente ◽  
Sangam Shrestha ◽  
Nitin Tripathi

2021 ◽  
Author(s):  
Bekam Bekele Gulti ◽  
Boja Mokonnen Manyazew ◽  
Abdulkerim Bedewi Serur

Abstract Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow change. In this paper, we investigate the impact of climate and LULC change impact on stream flow of Guder catchment by using Soil and Water Assessment model (SWAT). The scenarios were designed in a way that LULC was changed while climate conditions remain constant; LULC was then held constant under a changing climate and combined effect of both. The result shows that, the combined impacts of climate change and LULC dynamics can be rather different from the effects that follow-on from LULC or climate change alone. Streamflow would be more sensitive to climate change than to the LULC changes scenario, even though changes in LULC have far-reaching influences on streamflow in the study region. A comprehensive strategy of low impact developments, smart growth, and open space is critical to handle future changes to streamflow systems.


Author(s):  
Xiaoli Zhou ◽  
Jingang Liang ◽  
Ying Luan ◽  
Xinyuan Song ◽  
Zhengguang Zhang

Returning straw to the soil is an effective way to improve the soil quality. As genetically modified (GM) crops experience expanded growing scales, returning straw to the soil could also be necessary. However, the impact of GM crop straws on soil safety remains unclear. The environment (including soil types, humidity and temperature) can result in a significant difference in the diversity of soil bacterial communities. Here, we compared the impacts of the straw from Bt maize IE09S034 (IE) and near-isogenic non-Bt maize Zong31 (CK) on soil bacterial community and microbial metabolic activity in three different environments. Sampling was carried out following 6–10 months of decomposition (May, June, July, and August) in three localities in Chinese cities (Changchun, Jinan, and Beijing). Our results showed that Bt maize residues posed no direct impact on soil bacterial communities in contrast to the environment and decomposed time. The microbial functional diversity and metabolic activity showed no significant difference between IE and CK. The results could be a reference for further assessing the effect of Bt maize residues on the soil that promotes the commercialisation of Bt maize IE09S034.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karina A. Chavarria ◽  
Kristin Saltonstall ◽  
Jorge Vinda ◽  
Jorge Batista ◽  
Megan Lindmark ◽  
...  

AbstractLand use is known to affect water quality yet the impact it has on aquatic microbial communities in tropical systems is poorly understood. We used 16S metabarcoding to assess the impact of land use on bacterial communities in the water column of four streams in central Panama. Each stream was influenced by a common Neotropical land use: mature forest, secondary forest, silvopasture and traditional cattle pasture. Bacterial community diversity and composition were significantly influenced by nearby land uses. Streams bordered by forests had higher phylogenetic diversity (Faith’s PD) and similar community structure (based on weighted UniFrac distance), whereas the stream surrounded by traditional cattle pasture had lower diversity and unique bacterial communities. The silvopasture stream showed strong seasonal shifts, with communities similar to forested catchments during the wet seasons and cattle pasture during dry seasons. We demonstrate that natural forest regrowth and targeted management, such as maintaining and restoring riparian corridors, benefit stream-water microbiomes in tropical landscapes and can provide a rapid and efficient approach to balancing agricultural activities and water quality protection.


2021 ◽  
Author(s):  
Morteza Akbari ◽  
Ehsan Neamatollahi ◽  
Hadi Memarian ◽  
Mohammad Alizadeh Noughani

Abstract Floods cause great damage to ecosystems and are among the main agents of soil erosion. Given the importance of soils for the functioning of ecosystems and development and improvement of bio-economic conditions, the risk and rate of soil erosion was assessed using the RUSLE model in Iran’s Lorestan province before and after a period of major floods in late 2018 and early 2019. Furthermore, soil erosion was calculated for current and future conditions based on the Global Soil Erosion Modeling Database (GloSEM). The results showed that agricultural development and land use change are the main causes of land degradation in the southern and central parts of the study area. The impact of floods was also significant since our evaluations showed that soil erosion increased from 4.12 t ha-1 yr-1 before the floods to 10.93 t ha-1 yr-1 afterwards. Field surveying using 64 ground control points determined that erodibility varies from 0.17 to 0.49% in the study area. Orchards, farms, rangelands and forests with moderate or low vegetation cover were the most vulnerable land uses to soil erosion. The GloSEM modeling results revealed that climate change is the main cause of change in the rate of soil erosion. Combined land use change-climate change simulation showed that soil erosion will increase considerably in the future under SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5 scenarios. In the study area, both natural factors, i.e. climate change and human factors such as agricultural development, population growth, and overgrazing are the main drivers of soil erosion.


2011 ◽  
Vol 79 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Eiko E. Kuramae ◽  
Etienne Yergeau ◽  
Lina C. Wong ◽  
Agata S. Pijl ◽  
Johannes A. Veen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document