scholarly journals Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis

2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Yael J. Toporek ◽  
Jung Kee Mok ◽  
Hyun Dong Shin ◽  
Brady D. Lee ◽  
M. Hope Lee ◽  
...  

ABSTRACT The metal-reducing gammaproteobacterium Shewanella oneidensis reduces iodate (IO3−) as an anaerobic terminal electron acceptor. Microbial IO3− electron transport pathways are postulated to terminate with nitrate (NO3−) reductase, which reduces IO3− as an alternative electron acceptor. Recent studies with S. oneidensis, however, have demonstrated that NO3− reductase is not involved in IO3− reduction. The main objective of the present study was to determine the metal reduction and protein secretion genes required for IO3− reduction by Shewanella oneidensis with lactate, formate, or H2 as the electron donor. With all electron donors, the type I and type V protein secretion mutants retained wild-type IO3− reduction activity, while the type II protein secretion mutant lacking the outer membrane secretin GspD was impaired in IO3− reduction. Deletion mutants lacking the cyclic AMP receptor protein (CRP), cytochrome maturation permease CcmB, and inner membrane-tethered c-type cytochrome CymA were impaired in IO3− reduction with all electron donors, while deletion mutants lacking c-type cytochrome MtrA and outer membrane β-barrel protein MtrB of the outer membrane MtrAB module were impaired in IO3− reduction with only lactate as an electron donor. With all electron donors, mutants lacking the c-type cytochromes OmcA and MtrC of the metal-reducing extracellular electron conduit MtrCAB retained wild-type IO3− reduction activity. These findings indicate that IO3− reduction by S. oneidensis involves electron donor-dependent metal reduction and protein secretion pathway components, including the outer membrane MtrAB module and type II protein secretion of an unidentified IO3− reductase to the S. oneidensis outer membrane. IMPORTANCE Microbial iodate (IO3−) reduction is a major component in the biogeochemical cycling of iodine and the bioremediation of iodine-contaminated environments; however, the molecular mechanism of microbial IO3− reduction is poorly understood. Results of the present study indicate that outer membrane (type II) protein secretion and metal reduction genes encoding the outer membrane MtrAB module of the extracellular electron conduit MtrCAB are required for IO3− reduction by S. oneidensis. On the other hand, the metal-reducing c-type cytochrome MtrC of the extracellular electron conduit is not required for IO3− reduction by S. oneidensis. These findings indicate that the IO3− electron transport pathway terminates with an as yet unidentified IO3− reductase that associates with the outer membrane MtrAB module to deliver electrons extracellularly to IO3−.

2002 ◽  
Vol 184 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Thomas J. DiChristina ◽  
Charles M. Moore ◽  
Carolyn A. Haller

ABSTRACT Shewanella putrefaciens strain 200 respires anaerobically on a wide range of compounds as the sole terminal electron acceptor, including ferric iron [Fe(III)] and manganese oxide [Mn(IV)]. Previous studies demonstrated that a 23.3-kb S. putrefaciens wild-type DNA fragment conferred metal reduction capability to a set of respiratory mutants with impaired Fe(III) and Mn(IV) reduction activities (T. DiChristina and E. DeLong, J. Bacteriol. 176:1468–1474, 1994). In the present study, the smallest complementing fragment was found to contain one open reading frame (ORF) (ferE) whose translated product displayed 87% sequence similarity to Aeromonas hydrophila ExeE, a member of the PulE (GspE) family of proteins found in type II protein secretion systems. Insertional mutants E726 and E912, constructed by targeted replacement of wild-type ferE with an insertionally inactivated ferE construct, were unable to respire anaerobically on Fe(III) or Mn(IV) yet retained the ability to grow on all other terminal electron acceptors. Nucleotide sequence analysis of regions flanking ferE revealed the presence of one partial and two complete ORFs whose translated products displayed 55 to 70% sequence similarity to the PulD, -F, and -G homologs of type II secretion systems. A contiguous cluster of 12 type II secretion genes (pulC to -N homologs) was found in the unannotated genome sequence of Shewanella oneidensis (formerly S. putrefaciens) MR-1. A 91-kDa heme-containing protein involved in Fe(III) reduction was present in the peripheral proteins loosely attached to the outside face of the outer membrane of the wild-type and complemented (Fer+) B31 transconjugates yet was missing from this location in Fer mutants E912 and B31 and in uncomplemented (Fer−) B31 transconjugates. Membrane fractionation studies with the wild-type strain supported this finding: the 91-kDa heme-containing protein was detected with the outer membrane fraction and not with the inner membrane or soluble fraction. These findings provide the first genetic evidence linking dissimilatory metal reduction to type II protein secretion and provide additional biochemical evidence supporting outer membrane localization of S. putrefaciens proteins involved in anaerobic respiration on Fe(III) and Mn(IV).


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Fernanda Jiménez Otero ◽  
Chi Ho Chan ◽  
Daniel R. Bond

ABSTRACTAt least five gene clusters in theGeobacter sulfurreducensgenome encode putative “electron conduits” implicated in electron transfer across the outer membrane, each containing a periplasmic multihemec-type cytochrome, integral outer membrane anchor, and outer membrane redox lipoprotein(s). Markerless single-gene-cluster deletions and all possible multiple-deletion combinations were constructed and grown with soluble Fe(III) citrate, Fe(III) and Mn(IV) oxides, and graphite electrodes poised at +0.24 V and −0.1 V versus the standard hydrogen electrode (SHE). Different gene clusters were necessary for reduction of each electron acceptor. During metal oxide reduction, deletion of the previously describedomcBCcluster caused defects, but deletion of additional components in an ΔomcBCbackground, such asextEFG, were needed to produce defects greater than 50% compared to findings with the wild type. Deletion of all five gene clusters abolished all metal reduction. During electrode reduction, only the ΔextABCDmutant had a severe growth defect at both redox potentials, while this mutation did not affect Fe(III) oxide, Mn(IV) oxide, or Fe(III) citrate reduction. Some mutants containing only one cluster were able to reduce particular terminal electron acceptors better than the wild type, suggesting routes for improvement by targeting specific electron transfer pathways. Transcriptomic comparisons between fumarate and electrode-based growth conditions showed all of theseextclusters to be constitutive, and transcriptional analysis of the triple-deletion strain containing onlyextABCDdetected no significant changes in expression of genes encoding known redox proteins or pilus components. These genetic experiments reveal new outer membrane conduit complexes necessary for growth ofG. sulfurreducens, depending on the available extracellular electron acceptor.IMPORTANCEGram-negative metal-reducing bacteria utilize electron conduits, chains of redox proteins spanning the outer membrane, to transfer electrons to the extracellular surface. Only one pathway for electron transfer across the outer membrane ofGeobacter sulfurreducenshas been linked to Fe(III) reduction. However,G. sulfurreducensis able to respire a wide array of extracellular substrates. Here we present the first combinatorial genetic analysis of five different electron conduits via creation of new markerless deletion strains and complementation vectors. Multiple conduit gene clusters appear to have overlapping roles, including two that have never been linked to metal reduction. Another recently described cluster (ExtABCD) was the only electron conduit essential during electrode reduction, a substrate of special importance to biotechnological applications of this organism.


2011 ◽  
Vol 77 (12) ◽  
pp. 4035-4041 ◽  
Author(s):  
Sara M. Belchik ◽  
David W. Kennedy ◽  
Alice C. Dohnalkova ◽  
Yuanmin Wang ◽  
Papatya C. Sevinc ◽  
...  

ABSTRACTTo characterize the roles of cytochromes MtrC and OmcA ofShewanella oneidensisMR-1 in Cr(VI) reduction, the effects of deleting themtrCand/oromcAgene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion ofmtrCdecreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion ofomcAor bothmtrCandomcAlowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion ofmtrCandomcAdiminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparentkcatvalues of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s−1andKmvalues of 34.1 ± 4.5 and 41.3 ± 7.9 μM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used byS. oneidensisMR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Bridget E. Conley ◽  
Peter J. Intile ◽  
Daniel R. Bond ◽  
Jeffrey A. Gralnick

ABSTRACTExtracellular electron transfer (EET) is a strategy for respiration in which electrons generated from metabolism are moved outside the cell to a terminal electron acceptor, such as iron or manganese oxide. EET has primarily been studied in two model systems,Shewanella oneidensisandGeobacter sulfurreducens. Metal reduction has also been reported in numerous microorganisms, includingAeromonasspp., which are ubiquitousGammaproteobacteriafound in aquatic ecosystems, with some species capable of pathogenesis in humans and fish. Genomic comparisons ofAeromonasspp. revealed a potential outer membrane conduit homologous toS. oneidensisMtrCAB. While the ability to respire metals and mineral oxides is not widespread in the genusAeromonas, 90% of the sequencedAeromonas hydrophilaisolates contain MtrCAB homologs.A. hydrophilaATCC 7966 mutants lackingmtrAare unable to reduce metals. Expression ofA. hydrophila mtrCABin anS. oneidensismutant lacking homologous components restored metal reduction. Although the outer membrane conduits for metal reduction were similar, homologs of theS. oneidensisinner membrane and periplasmic EET components CymA, FccA, and CctA were not found inA. hydrophila. We characterized a cluster of genes predicted to encode components related to a formate-dependent nitrite reductase (NrfBCD), here named NetBCD (forNrf-likeelectrontransfer), and a predicted diheme periplasmic cytochrome, PdsA (periplasmicdihemeshuttle). We present genetic evidence that proteins encoded by this cluster facilitate electron transfer from the cytoplasmic membrane across the periplasm to the MtrCAB conduit and function independently from an authentic NrfABCD system.A. hydrophilamutants lackingpdsAandnetBCDwere unable to reduce metals, while heterologous expression of these genes could restore metal reduction in anS. oneidensismutant background. EET may therefore allowA. hydrophilaand other species ofAeromonasto persist and thrive in iron- or manganese-rich oxygen-limited environments.IMPORTANCEMetal-reducing microorganisms are used for electricity production, bioremediation of toxic compounds, wastewater treatment, and production of valuable compounds. Despite numerous microorganisms being reported to reduce metals, the molecular mechanism has primarily been studied in two model systems,Shewanella oneidensisandGeobacter sulfurreducens. We have characterized the mechanism of extracellular electron transfer inAeromonas hydrophila, which uses the well-studiedShewanellasystem, MtrCAB, to move electrons across the outer membrane; however, mostAeromonasspp. appear to use a novel mechanism to transfer electrons from the inner membrane through the periplasm and to the outer membrane. The conserved use of MtrCAB inShewanellaspp. andAeromonasspp. for metal reduction and conserved genomic architecture of metal reduction genes inAeromonasspp. may serve as genomic markers for identifying metal-reducing microorganisms from genomic or transcriptomic sequencing. Understanding the variety of pathways used to reduce metals can allow for optimization and more efficient design of microorganisms used for practical applications.


2012 ◽  
Vol 80 (7) ◽  
pp. 2286-2296 ◽  
Author(s):  
William E. Sause ◽  
Andrea R. Castillo ◽  
Karen M. Ottemann

ABSTRACTThe human pathogenHelicobacter pyloriemploys a diverse collection of outer membrane proteins to colonize, persist, and drive disease within the acidic gastric environment. In this study, we sought to elucidate the function of the host-induced geneHP0289, which encodes an uncharacterized outer membrane protein. We first generated an isogenicH. pylorimutant that lacksHP0289and found that the mutant has a colonization defect in single-strain infections and is greatly outcompeted in mouse coinfection experiments with wild-typeH. pylori. Furthermore, we used protease assays and biochemical fractionation coupled with an HP0289-targeted peptide antibody to verify that the HP0289 protein resides in the outer membrane. Our previous findings showed that theHP0289promoter is upregulated in the mouse stomach, and here we demonstrate thatHP0289expression is induced under acidic conditions in an ArsRS-dependent manner. Finally, we have shown that theHP0289mutant induces greater expression of the chemokine interleukin-8 (IL-8) and the cytokine tumor necrosis factor alpha (TNF-α) in gastric carcinoma cells (AGS). Similarly, transcription of the IL-8 homolog keratinocyte-derived chemokine (KC) is elevated in murine infections with the HP0289 mutant than in murine infections with wild-typeH. pylori. On the basis of this phenotype, we renamed HP0289 ImaA forimmunomodulatoryautotransporter protein. Our work has revealed that genes inducedin vivoplay an important role inH. pyloripathogenesis. Specifically, the outer membrane protein ImaA modulates a component of the host inflammatory response, and thus may allowH. pylorito fine tune the host immune response based on ImaA expression.


2008 ◽  
Vol 190 (14) ◽  
pp. 5127-5131 ◽  
Author(s):  
James W. Donald ◽  
Matthew G. Hicks ◽  
David J. Richardson ◽  
Tracy Palmer

ABSTRACT We have functionally produced the outer membrane cytochrome OmcA from Shewanella oneidensis in Escherichia coli. Substrate accessibility experiments indicate that OmcA is surface exposed in an E. coli B strain but not in a K-12 strain. We show that a functional type II secretion system is required for surface localization.


2016 ◽  
Vol 82 (13) ◽  
pp. 3996-4005 ◽  
Author(s):  
Ramanan Sekar ◽  
Hyun Dong Shin ◽  
Thomas J. DiChristina

ABSTRACTShewanella oneidensisis unable to metabolize the sugar xylose as a carbon and energy source. In the present study, an otherwise silent xylose catabolic pathway was activated inS. oneidensisby following an adaptive evolution strategy. Genome-wide scans indicated that theS. oneidensisgenome encoded two proteins similar to the xylose oxido-reductase pathway enzymes xylose reductase (SO_0900) and xylulokinase (SO_4230), and purified SO_0900 and SO_4230 displayed xylose reductase and xylulokinase activities, respectively. TheS. oneidensisgenome was missing, however, anEscherichia coliXylE-like xylose transporter. After 12 monthly transfers in minimal growth medium containing successively higher xylose concentrations, anS. oneidensismutant (termed strain XM1) was isolated for the acquired ability to grow aerobically on xylose as a carbon and energy source. Whole-genome sequencing indicated that strain XM1 contained a mutation in an unknown membrane protein (SO_1396) resulting in a glutamine-to-histidine conversion at amino acid position 207. Homology modeling demonstrated that the Q207H mutation in SO_1396 was located at the homologous xylose docking site in XylE. The expansion of theS. oneidensismetabolic repertoire to xylose expands the electron donors whose oxidation may be coupled to the myriad of terminal electron-accepting processes catalyzed byS. oneidensis. Since xylose is a lignocellulose degradation product, this study expands the potential substrates to include lignocellulosic biomass.IMPORTANCEThe activation of an otherwise silent xylose metabolic system inShewanella oneidensisis a powerful example of how accidental mutations allow microorganisms to adaptively evolve. The expansion of theS. oneidensismetabolic repertoire to xylose expands the electron donors whose oxidation may be coupled to the myriad of terminal electron-accepting processes catalyzed byS. oneidensis. Since xylose is a lignocellulose degradation product, this study expands the potential substrates to include lignocellulosic biomass.


2013 ◽  
Vol 79 (10) ◽  
pp. 3171-3175 ◽  
Author(s):  
Joanne Theisen ◽  
Gerben J. Zylstra ◽  
Nathan Yee

ABSTRACTThe genetic identity and cofactor composition of the bacterial tellurate reductase are currently unknown. In this study, we examined the requirement of molybdopterin biosynthesis and molybdate transporter genes for tellurate reduction inEscherichia coliK-12. The results show that mutants deleted of themoaA,moaB,moaE, ormoggene in the molybdopterin biosynthesis pathway lost the ability to reduce tellurate. Deletion of themodBormodCgene in the molybdate transport pathway also resulted in complete loss of tellurate reduction activity. Genetic complementation by the wild-type sequences restored tellurate reduction activity in the mutant strains. These findings provide genetic evidence that tellurate reduction inE. coliinvolves a molybdoenzyme.


2019 ◽  
Vol 1 (8) ◽  
Author(s):  
Xiao-Lin Tian ◽  
Miao Li ◽  
Zachariah Scinocca ◽  
Heather Rutherford ◽  
Yung-Hua Li

The type II toxin–antitoxin (TA) modules, mazEF and relBE, in Streptococcus mutans have been implicated in stress response, antibiotic tolerance and persister cell formation. However, how S. mutans regulates these systems to prevent unwanted toxin activation and persister cell formation is unclear. In this study, we provide evidence that ClpP is required for the proteolytic regulation of these TA systems and persister cell formation in S. mutans following antibiotic challenge. A persister viability assay showed that S. mutans UA159 (WT) formed a larger quantity of persister cells than its isogenic mutant ΔclpP following antibiotic challenge. However, the lux reporter assay revealed that clpP deletion did not affect the transcriptional levels of mazEF and relBE, since no significant differences (P>0.05) in the reporter activities were detected between the wild-type and ΔclpP background. Instead, all antibiotics tested at a sub-minimum inhibitory concentration (sub-MIC) induced transcriptional levels of mazEF and relBE operons. We then examined the protein profiles of His-tagged MazE and RelB proteins in the UA159 and ΔclpP backgrounds by Western blotting analysis. The results showed that S. mutans strains grown under non-stress conditions expressed very low but detectable levels of MazE and RelB antitoxin proteins. Antibiotics at sub-MICs induced the levels of the MazE and RelB proteins, but the protein levels decreased rapidly in the wild-type background. In contrast, a stable level of MazE and RelB proteins could be detected in the ΔclpP mutant background, suggesting that both proteins accumulated in the ΔclpP mutant. We conclude that ClpP is required for the proteolytic regulation of cellular levels of the MazE and RelB antitoxins in S. mutans , which may play a critical role in modulating the TA activities and persister cell formation of this organism following antibiotic challenge.


2015 ◽  
Vol 83 (11) ◽  
pp. 4314-4321 ◽  
Author(s):  
Azad Eshghi ◽  
Jeremy Henderson ◽  
M. Stephen Trent ◽  
Mathieu Picardeau

ABSTRACTLeptospirosis is an emerging disease with an annual occurrence of over 1 million human cases worldwide. PathogenicLeptospirabacteria are maintained in zoonotic cycles involving a diverse array of mammals, with the capacity to survive outside the host in aquatic environments. Survival in the diverse environments encountered byLeptospiralikely requires various adaptive mechanisms. Little is known aboutLeptospiraouter membrane modification systems, which may contribute to the capacity of these bacteria to successfully inhabit and colonize diverse environments and animal hosts.Leptospirabacteria carry two genes annotated as UDP-3-O-[3-hydroxymyristoyl] glucosamineN-acyltransferase genes (la0512 and la4326 [lpxD1andlpxD2]) that in other bacteria are involved in the early steps of biosynthesis of lipid A, the membrane lipid anchor of lipopolysaccharide. Inactivation of only one of these genes, la0512/lpxD1, imparted sensitivity to the host physiological temperature (37°C) and rendered the bacteria avirulent in an animal infection model. Polymyxin B sensitivity assays revealed compromised outer membrane integrity in thelpxD1mutant at host physiological temperature, but structural analysis of lipid A in the mutant revealed only minor changes in the lipid A moiety compared to that found in the wild-type strain. In accordance with this, anin transcomplementation restored the phenotypes to a level comparable to that of the wild-type strain. These results suggest that the gene annotated aslpxD1inLeptospira interrogansplays an important role in temperature adaptation and virulence in the animal infection model.


Sign in / Sign up

Export Citation Format

Share Document